首页 > 代码库 > hdu4565 So Easy!(矩阵快速幂)

hdu4565 So Easy!(矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565

 

题解:(a+√b)^n=xn+yn*√b,(a-√b)^n=xn-yn*√b,

(a+√b)^n=2*xn-(a-√b)^n,(0<=a-√b<=1),所以整数部分就是2*xn

然后再利用两个公式

(a+√b)^(n+1)=(a+√b)*(xn+yn*√b)

(a-√b)^(n+1)=(a-√b)*(xn-yn*√b)

联立得到

x(n+1)=a*xn+b*yn

y(n+1)=xn+a*yn;

然后就是矩阵快速幂

#include <iostream>#include <cstring>#include <cstdio>using namespace std;typedef long long ll;struct Matrix {    ll dp[3][3];};ll a , b , n , m;Matrix Mul(Matrix a , Matrix b) {    Matrix c;    memset(c.dp , 0 , sizeof(c.dp));    for(int i = 0 ; i < 2 ; i++) {        for(int j = 0 ; j < 2 ; j++) {            for(int k = 0 ; k < 2 ; k++) {                c.dp[i][j] += ((a.dp[i][k] * b.dp[k][j]) % m + m) % m;            }        }    }    return c;}Matrix quick_pow(Matrix a , ll k) {    Matrix res;    memset(res.dp , 0 , sizeof(res.dp));    for(int i = 0 ; i < 2 ; i++) {        res.dp[i][i] = 1;    }    while(k) {        if(k & 1) res = Mul(res , a);        k >>= 1;        a = Mul(a , a);    }    return res;}int main() {    while(~scanf("%lld%lld%lld%lld" , &a , &b , &n , &m)) {        if(n == 0) {            printf("%lld\n" , (ll)1 % m);        }        else {            Matrix cnt , ans , sta;            sta.dp[0][0] = 1 , sta.dp[1][0] = 0;            cnt.dp[0][0] = a , cnt.dp[0][1] = b;            cnt.dp[1][0] = 1 , cnt.dp[1][1] = a;            ans = quick_pow(cnt , n);            ans = Mul(ans , sta);            printf("%lld\n" , 2 * ans.dp[0][0] % m);        }    }    return 0;}

hdu4565 So Easy!(矩阵快速幂)