首页 > 代码库 > HDU 3571 N-dimensional Sphere( 高斯消元+ 同余 )

HDU 3571 N-dimensional Sphere( 高斯消元+ 同余 )

N-dimensional Sphere

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 668    Accepted Submission(s): 234


Problem Description
In an N-dimensional space, a sphere is defined as {(x1, x2 ... xN)| ∑(xi-Xi)^2 = R^2 (i=1,2,...,N) }. where (X1,X2…XN) is the center. You‘re given N + 1 points on an N-dimensional sphere and are asked to calculate the center of the sphere.
 

 

Input
The first line contains an integer T which is the number of test cases.
For each case there‘s one integer N on the first line.
Each of the N+1 following lines contains N integers x1, x2 ... xN describing the coordinate of a point on the N-dimensional sphere.
(0 <= T <= 10, 1 <= N <= 50, |xi| <= 10^17)
 

 

Output
For the kth case, first output a line contains “Case k:”, then output N integers on a line indicating the center of the N-dimensional sphere
(It‘s guaranteed that all coordinate components of the answer are integers and there is only one solution and |Xi| <= 10^17)
 

 

Sample Input
2
2
1 0
-1 0
0 1
3
2 2 3
0 2 3
1 3 3
1 2 4
 

 

Sample Output
Case 1:
0 0
Case 2:
1 2 3
 
 
 
这条题目的做法很容易想出来 。
凭借 n + 1 个点代入 n 维圆公式, 求圆心 。
然后用第 n + 1 个方程( 设下标为n )  sigma( ( Xi - Oi )^2 )  = R^2 
跟前n 个方程联立容易得到 :
  sigma( ( Xi - Oi )^2 )  =  sigma( ( Yi - Oi )^2 )  
两边都展开然后消掉Oi^2就得到
  sigma(  2*( Xi - Yi )*Oi ) = sigma(  Xi^2 - Yi^2 )  .
得到 n 个这样的 n 元一次方程之后就可以利用高斯消元解决。
 
但首先 fabs( xi ) <= 1e17 的。 大数据的话显然计算过程溢出 。
就用到  sigma( ai * xi ) = an ( % mod ) 来解决。 求得解依然唯一。
 
在高斯消元的过程中会有除法 , 用求逆来解决。
由于数据很大, 欧拉定理会溢 , 那么用扩展欧几里得就OK 。
 
然后还需要将数据加一个偏移差,把所有数据处理成正数 (相当于把整个图形平移了,最后减回来不影响结果)。
避免在取余过程中把(负数+mod)%mod弄成了正。
 
 
技术分享
#include <iostream>#include <cstdio>#include <cstring>#include <string>#include <cmath>#include <vector>#include <queue>#include <map>#include <set>#include <stack>#include <algorithm>using namespace std;#define root 1,n,1#define lson l,mid,rt<<1#define rson mid+1,r,rt<<1|1#define lr rt<<1#define rr rt<<1|1typedef long long LL;typedef pair<int,int>pii;#define X first#define Y secondconst int oo = 1e9+7;const double PI = acos(-1.0);const double eps = 1e-6 ;const int N = 55;#define mod 200000000000000003LL#define dif 100000000000000000LLLL Mod(LL x) {    if (x >= mod) return x - mod;    return x;}LL mul(LL a, LL b) {    LL res;    for (res = 0; b; b >>= 1) {        if (b & 1)            res = Mod(res + a);        a = Mod(a + a);    }    return res;}void e_gcd( LL a , LL b , LL &d , LL &x , LL &y ) {    if( !b ){ d = a , x = 1 , y = 0 ; return ; }    e_gcd( b , a%b , d , y , x );    y -= x*(a/b);}LL inv( LL a , LL n ){    LL d,x,y ;    e_gcd(a,n,d,x,y);    return ( x % n + n ) % n ;}LL A[N][N] , g[N][N];int n ;void Gauss() {    for( int i = 0 ; i < n ; ++i ) {        int r = i ;        for( int j = i ; j < n ; ++j ) {            if( g[j][i] ) { r = j ; break ; }        }        if( r != i ) for( int j = 0 ; j <= n ; ++j ) swap( g[i][j] , g[r][j] ) ;        LL INV = inv( g[i][i] , mod );        for( int k = i + 1 ; k < n ; ++k ) {            if( g[k][i] ) {                LL f = mul( g[k][i] , INV );                for( int j = i ; j <= n ; ++j ) {                    g[k][j] -= mul( f , g[i][j] );                    g[k][j] = ( g[k][j] % mod + mod ) % mod ;                }            }        }    }    for( int i = n - 1 ; i >= 0 ; --i ){        for( int j = i + 1 ; j < n ; ++j ){            g[i][n] -= mul( g[j][n] , g[i][j] ) , g[i][n] += mod , g[i][n] %= mod ;        }        g[i][n] = mul( g[i][n] , inv( g[i][i] , mod ) );    }}void Run() {    scanf("%d",&n);    memset( g , 0 , sizeof g );    for( int i = 0 ; i <= n ; ++i ) {        for( int j = 0 ; j < n ; ++j ) {            scanf("%I64d",&A[i][j]);            A[i][j] += dif ;        }    }    for( int i = 0 ; i < n ; ++i ){        for( int j = 0 ; j < n ; ++j ){            g[i][j] = Mod( A[n][j] - A[i][j] + mod );            g[i][j] = mul( g[i][j] , 2 ) ;            g[i][n] = Mod( g[i][n] + mul( A[n][j] , A[n][j] ) );            g[i][n] = Mod( g[i][n] - mul( A[i][j] , A[i][j] ) + mod );        }    }    Gauss();    printf("%I64d",g[0][n]-dif);    for( int i = 1 ; i < n ; ++i ){        printf(" %I64d",g[i][n]-dif);    }puts("");}int main(){    #ifdef LOCAL        freopen("in.txt","r",stdin);    #endif // LOCAL    int cas = 1 , _ ; scanf("%d",&_ );    while( _-- ){        printf("Case %d:\n",cas++); Run();    }}
View Code

 

HDU 3571 N-dimensional Sphere( 高斯消元+ 同余 )