首页 > 代码库 > AVL树——高度平衡的二叉搜索树
AVL树——高度平衡的二叉搜索树
1 #pragma once 2 3 #include<stack> 4 5 template<class Type> 6 class AVLTree; 7 8 template<class Type> 9 class AVLNode 10 { 11 friend class AVLTree<Type>; 12 public: 13 AVLNode() : data(Type()),leftChild(NULL),rightChild(NULL),bf(0) 14 {} 15 AVLNode(Type d, AVLNode<Type>*left=NULL,AVLNode<Type>*right=NULL) 16 : data(d),leftChild(left),rightChild(right),bf(0) 17 {} 18 ~AVLNode() 19 {} 20 public: 21 void SetData(Type d); 22 Type& GetData()const; 23 private: 24 Type data; 25 AVLNode *leftChild; 26 AVLNode *rightChild; 27 int bf; 28 }; 29 30 template<class Type> 31 class AVLTree 32 { 33 public: 34 AVLTree() : root(NULL) 35 {} 36 public: 37 void Insert(const Type &x) 38 { 39 Insert(root, x); 40 } 41 bool Remove(const Type &key) 42 { 43 return Remove(root, key); 44 } 45 private: 46 bool Remove(AVLNode<Type> *&t, const Type &key) 47 { 48 //1 49 if(t == NULL) 50 return false; 51 AVLNode<Type> *p = t; 52 AVLNode<Type> *q; 53 AVLNode<Type> *pr = NULL; 54 stack<AVLNode<Type> *> st; 55 while(p != NULL) 56 { 57 if(p->data =http://www.mamicode.com/= key) 58 break; 59 60 pr = p; 61 st.push(pr); 62 63 if(key < p->data) 64 p = p->leftChild; 65 else 66 p = p->rightChild; 67 } 68 69 if(p == NULL) 70 return false; 71 // 72 if(p->leftChild!=NULL && p->rightChild!=NULL) 73 { 74 pr = p; 75 st.push(pr); 76 77 q = p->leftChild; 78 while(q->rightChild != NULL) 79 { 80 pr = q; 81 q = q->rightChild; 82 } 83 p->data = http://www.mamicode.com/q->data; 84 p = q; 85 } 86 87 // 88 if(p->leftChild != NULL) 89 q = p->leftChild; 90 else 91 q = p->rightChild; 92 93 if(pr == NULL) 94 t = q; 95 else 96 { 97 if(pr->leftChild == p) 98 pr->leftChild = q; 99 else 100 pr->rightChild = q; 101 102 /////////////////////////////////// 103 while(!st.empty()) 104 { 105 pr = st.top(); 106 st.pop(); 107 108 if(pr->leftChild == q) 109 pr->bf++; 110 else 111 pr->bf--; 112 113 if(pr->bf==1 || pr->bf==-1) 114 break; 115 else if(pr->bf == 0) 116 q = pr; 117 else 118 { 119 if(pr->bf > 0) 120 q = pr->rightChild; 121 else 122 q = pr->leftChild; 123 124 if(q->bf == 0) // 单旋转 125 { 126 if(pr->bf > 0) 127 { 128 //RotateL(pr); 129 //bf ???? 130 } 131 else 132 { 133 RotateR(pr); 134 //pr->bf = ??? 135 //pr->rightChild->bf = ????? 136 } 137 } 138 else if(q->bf > 0) 139 { 140 if(pr->bf > 0) // \ 141 { 142 RotateL(pr); 143 } 144 else // < 145 { 146 RotateLR(pr); 147 //cout<<"RotateLR"<<endl; 148 } 149 } 150 else 151 { 152 if(pr->bf < 0) // / 153 { 154 RotateR(pr); 155 } 156 else // > 157 { 158 RotateRL(pr); 159 } 160 } 161 162 break; 163 } 164 } 165 166 // 167 AVLNode<Type> *ppr = st.top(); 168 if(ppr->data > pr->data ) 169 ppr->leftChild = pr; 170 else 171 ppr->rightChild = pr; 172 173 } 174 delete p; 175 return true; 176 } 177 void Insert(AVLNode<Type> *&rt, const Type &x) 178 { 179 AVLNode<Type> *pr = NULL; 180 AVLNode<Type>*t = rt; 181 stack<AVLNode<Type> *> St; 182 while(t != NULL) 183 { 184 if(x == t->data) 185 return; 186 187 pr = t; 188 St.push(pr); 189 190 if(x < t->data) 191 t = t->leftChild; 192 else if(x > t->data) 193 t = t->rightChild; 194 } 195 t = new AVLNode<Type>(x); 196 if(rt == NULL) 197 { 198 rt = t; 199 return; 200 } 201 202 if(x < pr->data) 203 pr->leftChild = t; 204 else 205 pr->rightChild = t; 206 207 while(!St.empty()) 208 { 209 pr = St.top(); 210 St.pop(); 211 212 if(pr->leftChild == t) 213 pr->bf--; 214 else 215 pr->bf++; 216 217 if(pr->bf == 0) 218 break; 219 else if(pr->bf==1 || pr->bf==-1) 220 t = pr; 221 else 222 { 223 //调整 224 if(pr->bf < 0) 225 { 226 if(t->bf < 0) // / 227 { 228 RotateR(pr); 229 } 230 else // < 231 { 232 RotateLR(pr); 233 } 234 } 235 else 236 { 237 if(t->bf > 0) // \ 238 { 239 RotateL(pr); 240 } 241 else // > 242 { 243 RotateRL(pr); 244 } 245 } 246 break; 247 } 248 } 249 if(St.empty()) 250 rt = pr; 251 else 252 { 253 AVLNode<Type> *s = St.top(); 254 if(pr->data < s->data) 255 s->leftChild = pr; 256 else 257 s->rightChild = pr; 258 } 259 } 260 protected: 261 AVLNode<Type>* RotateL(AVLNode<Type> *&ptr) 262 { 263 AVLNode<Type> *subL = ptr; 264 ptr = subL->rightChild; 265 subL->rightChild = ptr->leftChild; 266 ptr->leftChild = subL; 267 ptr->bf = subL->bf = 0; 268 return ptr; 269 } 270 AVLNode<Type>* RotateR(AVLNode<Type> *&ptr) 271 { 272 AVLNode<Type> *subR = ptr; 273 ptr = subR->leftChild; 274 subR->leftChild = ptr->rightChild; 275 ptr->rightChild = subR; 276 ptr->bf = subR->bf = 0; 277 return ptr; 278 } 279 AVLNode<Type>* RotateLR(AVLNode<Type> *&ptr) 280 { 281 AVLNode<Type> *subR = ptr; 282 AVLNode<Type> *subL = ptr->leftChild; 283 ptr = subL->rightChild; 284 285 subL->rightChild = ptr->leftChild; 286 ptr->leftChild = subL; 287 //bf 288 if(ptr->bf <= 0) 289 subL->bf = 0; 290 else 291 subL->bf = -1; 292 293 subR->leftChild = ptr->rightChild; 294 ptr->rightChild = subR; 295 //bf 296 if(ptr->bf >= 0) 297 subR->bf = 0; 298 else 299 subR->bf = 1; 300 301 ptr->bf = 0; 302 return ptr; 303 } 304 AVLNode<Type>* RotateRL(AVLNode<Type> *&ptr) 305 { 306 AVLNode<Type> *subL = ptr; 307 AVLNode<Type> *subR = ptr->rightChild; 308 ptr = subR->leftChild; 309 subR->leftChild = ptr->rightChild; 310 ptr->rightChild = subR; 311 //bf 312 if(ptr->bf >= 0) 313 subR->bf = 0; 314 else 315 subR->bf = 1; 316 317 subL->rightChild = ptr->leftChild; 318 ptr->leftChild = subL; 319 //bf 320 if(ptr->bf <= 0) 321 subL->bf = 0; 322 else 323 subL->bf = -1; 324 325 ptr->bf = 0; 326 return ptr; 327 } 328 private: 329 AVLNode<Type> *root; 330 };
AVL树——高度平衡的二叉搜索树
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。