首页 > 代码库 > [Codevs] 1523 地精部落

[Codevs] 1523 地精部落

 

1523 地精部落

省队选拔赛

时间限制: 1 s
空间限制: 256000 KB
题目等级 : 大师 Master
 
题目描述 Description
传说很久以前,大地上居住着一种神秘的生物:地精。 
地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正整数。 
如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 
类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 
地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 
地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮流担当瞭望工作,以确保在第一时间得知外敌的入侵。 
地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。 
现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它除以P的余数感兴趣。
 
输入描述 Input Description

输入仅含一行,两个正整数 N,P。 

 

输出描述 Output Description

输出仅含一行,一个非负整数,表示你所求的答案对P取余之后的结果。

 

样例输入 Sample Input

4 7

 

样例输出 Sample Output             

3

 

数据范围及提示 Data Size & Hint

共有10 种可能的山脉,它们是:
1324 1423 2143 2314 2413
3142 3241 3412 4132 4231 

【数据规模和约定】
对于 20%的数据,满足 N≤10;
对于 40%的数据,满足 N≤18;
对于 70%的数据,满足 N≤550;
对于 100%的数据,满足 3≤N≤4200,P≤109

 

分析 Analysis

我相信这道题一定有组合数学的解法(然而我自己找不到)

主流解法动态规划。

首先用DP[i][j]表示一种状态的方案数,该状态的数集有i个数(可以意淫为1~i),其中该状态子序列的第一个数取值范围为1~j

PS:这么意淫的前提是题目明确说明山峰高度是1~n的排列,因此显然1~(j-1)均小于j

同时约定表示所代表的方案均为A1 < A2也就是开头呈上升趋势,因此有DP[i][j] = DP[i][j-1]+DP[i-1][i-j]

DP[i][j-1]表示同样的状态下序列中第一个数取值范围为1~(j-1)时的方案数

DP[i-1][i-j]表示取走一个数之后的状态,此时数集中只剩i-1个数,而此时序列的第二个数范围必为j+1 ~ i,共i-j个数(因为已经约定序列开头上升了,所以第二个数必须比j大)

PS:我写这篇博客唯一的目的就是好好解释清楚这个转移方程

 

代码 Code

 

技术分享
 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cstring>
 4 using namespace std;
 5 
 6 int dp[5000][5000];
 7 
 8 int main(){
 9     
10     int n;
11     scanf("%d",&n);
12     
13     dp[1][1] = 1;
14     for(int i = 2;i <= n;i++){
15         for(int j = 1;j <= i;j++){
16             dp[i][j] = dp[i][j-1]+dp[i-1][i-j];
17         }
18     }
19     
20     printf("%d",dp[n][n]);
21     
22     return 0;
23 }
推荐不看

 

 

 

评价&分类 Rank&Sort

思维题. >> 动态规划

 

[Codevs] 1523 地精部落