首页 > 代码库 > Python大战机器学习

Python大战机器学习

一  矩阵求导

复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix。

技术分享

技术分享

 x is a column vector, A is a matrix

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享d(A?x)/dx=A            

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享d(xT?A)/dxT=A   

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享d(xT?A)/dx=AT    

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享d(xT?A?x)/dx=xT(AT+A)

 

practice:

技术分享

 

技术分享

技术分享

技术分享技术分享

常用的举证求导公式如下:
Y = A * X --> DY/DX = A‘
Y = X * A --> DY/DX = A
Y = A‘ * X * B --> DY/DX = A * B‘
Y = A‘ * X‘ * B --> DY/DX = B * A‘

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)‘

3. 行向量Y‘对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX‘/dX = I

d(AX)‘/dX = A‘

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX‘ = (dY‘/dX)‘

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV‘)/dX = (dU/dX)V‘ + U(dV‘/dX)

d(U‘V)/dX = (dU‘/dX)V + (dV‘/dX)U

重要结论:

d(X‘A)/dX = (dX‘/dX)A + (dA/dX)X‘ = IA + 0X‘ = A

d(AX)/dX‘ = (d(X‘A‘)/dX)‘ = (A‘)‘ = A

d(X‘AX)/dX = (dX‘/dX)AX + (d(AX)‘/dX)X = AX + A‘X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X‘A)/dX = (dX‘/dX)A + X‘(dA/dX) = IA + X‘0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U‘XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV‘

y = U‘X‘XU 则 dy/dX = 2XUU‘

y = (XU-V)‘(XU-V) 则 dy/dX = d(U‘X‘XU - 2V‘XU + V‘V)/dX = 2XUU‘ - 2VU‘ + 0 = 2(XU-V)U‘

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。

10. 乘积的导数

d(f*g)/dx=(df‘/dx)g+(dg/dx)f‘

结论

d(x‘Ax)=(d(x‘‘)/dx)Ax+(d(Ax)/dx)(x‘‘)=Ax+A‘x (注意:‘‘是表示两次转置)

 

二  线性模型

2.1 普通的最小二乘

  由 LinearRegression  函数实现。最小二乘法的缺点是依赖于自变量的相关性,当出现复共线性时,设计阵会接近奇异,因此由最小二乘方法得到的结果就非常敏感,如果随机误差出现什么波动,最小二乘估计也可能出现较大的变化。而当数据是由非设计的试验获得的时候,复共线性出现的可能性非常大。

技术分享
 1 print __doc__
 2 
 3 import pylab as pl
 4 import numpy as np
 5 from sklearn import datasets, linear_model
 6 
 7 diabetes = datasets.load_diabetes() #载入数据
 8 
 9 diabetes_x = diabetes.data[:, np.newaxis]
10 diabetes_x_temp = diabetes_x[:, :, 2]
11 
12 diabetes_x_train = diabetes_x_temp[:-20] #训练样本
13 diabetes_x_test = diabetes_x_temp[-20:] #检测样本
14 diabetes_y_train = diabetes.target[:-20]
15 diabetes_y_test = diabetes.target[-20:]
16 
17 regr = linear_model.LinearRegression()
18 
19 regr.fit(diabetes_x_train, diabetes_y_train)
20 
21 print Coefficients :\n, regr.coef_
22 
23 print ("Residual sum of square: %.2f" %np.mean((regr.predict(diabetes_x_test) - diabetes_y_test) ** 2))
24 
25 print ("variance score: %.2f" % regr.score(diabetes_x_test, diabetes_y_test))
26 
27 pl.scatter(diabetes_x_test,diabetes_y_test, color = black)
28 pl.plot(diabetes_x_test, regr.predict(diabetes_x_test),color=blue,linewidth = 3)
29 pl.xticks(())
30 pl.yticks(())
31 pl.show()
View Code

2.2 岭回归

  岭回归是一种正则化方法,通过在损失函数中加入L2范数惩罚项,来控制线性模型的复杂程度,从而使得模型更稳健。

 

from sklearn import linear_model
clf = linear_model.Ridge (alpha = .5)
clf.fit([[0,0],[0,0],[1,1]],[0,.1,1])
clf.coef_

 

2.3 Lassio

  asso和岭估计的区别在于它的惩罚项是基于L1范数的。因此,它可以将系数控制收缩到0,从而达到变量选择的效果。它是一种非常流行的变量选择 方法。Lasso估计的算法主要有两种,其一是用于以下介绍的函数Lasso的coordinate descent。另外一种则是下面会介绍到的最小角回归。

 

clf = linear_model.Lasso(alpha = 0.1)
clf.fit([[0,0],[1,1]],[0,1])
clf.predict([[1,1]])

 

2.4 Elastic Net

  ElasticNet是对Lasso和岭回归的融合,其惩罚项是L1范数和L2范数的一个权衡。下面的脚本比较了Lasso和Elastic Net的回归路径,并做出了其图形。

技术分享
 1 print __doc__
 2 
 3 # Author: Alexandre Gramfort 
 4 
 5  
 6 # License: BSD Style.
 7 
 8 import numpy as np
 9 import pylab as pl
10 
11 from sklearn.linear_model import lasso_path, enet_path
12 from sklearn import datasets
13 
14 diabetes = datasets.load_diabetes()
15 X = diabetes.data
16 y = diabetes.target
17 
18 X /= X.std(0)  # Standardize data (easier to set the l1_ratio parameter)
19 
20 # Compute paths
21 
22 eps = 5e-3  # the smaller it is the longer is the path
23 
24 print "Computing regularization path using the lasso..."
25 models = lasso_path(X, y, eps=eps)
26 alphas_lasso = np.array([model.alpha for model in models])
27 coefs_lasso = np.array([model.coef_ for model in models])
28 
29 print "Computing regularization path using the positive lasso..."
30 models = lasso_path(X, y, eps=eps, positive=True)#lasso path
31 alphas_positive_lasso = np.array([model.alpha for model in models])
32 coefs_positive_lasso = np.array([model.coef_ for model in models])
33 
34 print "Computing regularization path using the elastic net..."
35 models = enet_path(X, y, eps=eps, l1_ratio=0.8)
36 alphas_enet = np.array([model.alpha for model in models])
37 coefs_enet = np.array([model.coef_ for model in models])
38 
39 print "Computing regularization path using the positve elastic net..."
40 models = enet_path(X, y, eps=eps, l1_ratio=0.8, positive=True)
41 alphas_positive_enet = np.array([model.alpha for model in models])
42 coefs_positive_enet = np.array([model.coef_ for model in models])
43 
44 # Display results
45 
46 pl.figure(1)
47 ax = pl.gca()
48 ax.set_color_cycle(2 * [b, r, g, c, k])
49 l1 = pl.plot(coefs_lasso)
50 l2 = pl.plot(coefs_enet, linestyle=--)
51 
52 pl.xlabel(-Log(lambda))
53 pl.ylabel(weights)
54 pl.title(Lasso and Elastic-Net Paths)
55 pl.legend((l1[-1], l2[-1]), (Lasso, Elastic-Net), loc=lower left)
56 pl.axis(tight)
57 
58 pl.figure(2)
59 ax = pl.gca()
60 ax.set_color_cycle(2 * [b, r, g, c, k])
61 l1 = pl.plot(coefs_lasso)
62 l2 = pl.plot(coefs_positive_lasso, linestyle=--)
63 
64 pl.xlabel(-Log(lambda))
65 pl.ylabel(weights)
66 pl.title(Lasso and positive Lasso)
67 pl.legend((l1[-1], l2[-1]), (Lasso, positive Lasso), loc=lower left)
68 pl.axis(tight)
69 
70 pl.figure(3)
71 ax = pl.gca()
72 ax.set_color_cycle(2 * [b, r, g, c, k])
73 l1 = pl.plot(coefs_enet)
74 l2 = pl.plot(coefs_positive_enet, linestyle=--)
75 
76 pl.xlabel(-Log(lambda))
77 pl.ylabel(weights)
78 pl.title(Elastic-Net and positive Elastic-Net)
79 pl.legend((l1[-1], l2[-1]), (Elastic-Net, positive Elastic-Net),
80           loc=lower left)
81 pl.axis(tight)
82 pl.show()
View Code

2.5 逻辑回归

  Logistic回归是一个线性分类器。类 LogisticRegression 实现了该分类器,并且实现了L1范数,L2范数惩罚项的logistic回归。为了使用逻辑回归模型,我对鸢尾花进行分类。鸢尾花数据集一共150个数据,这些数据分为3类(分别为setosa,versicolor,virginica),每类50个数据。每个数据包含4个属性:萼片长度,萼片宽度,花瓣长度,花瓣宽度。具体代码如下:

技术分享
 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 from sklearn import datasets,linear_model,discriminant_analysis,cross_validation
 4 
 5 def load_data():
 6     iris=datasets.load_iris()
 7     X_train=iris.data
 8     Y_train=iris.target
 9     return cross_validation.train_test_split(X_train,Y_train,test_size=0.25,random_state=0,stratify=Y_train)
10 
11 def test_LogisticRegression(*data):  # default use one vs rest
12     X_train, X_test, Y_train, Y_test = data
13     regr=linear_model.LogisticRegression()
14     regr.fit(X_train,Y_train)
15     print("Coefficients:%s, intercept %s"%(regr.coef_,regr.intercept_))
16     print("Score:%.2f"%regr.score(X_test,Y_test))
17 
18 def test_LogisticRegression_multionmial(*data): #use multi_class
19     X_train, X_test, Y_train, Y_test = data
20     regr=linear_model.LogisticRegression(multi_class=multinomial,solver=lbfgs)
21     regr.fit(X_train,Y_train)
22     print(Coefficients:%s, intercept %s%(regr.coef_,regr.intercept_))
23     print("Score:%2f"%regr.score(X_test,Y_test))
24 
25 def test_LogisticRegression_C(*data):#C is the reciprocal of the regularization term
26     X_train, X_test, Y_train, Y_test = data
27     Cs=np.logspace(-2,4,num=100) #create equidistant series
28     scores=[]
29     for C in Cs:
30         regr=linear_model.LogisticRegression(C=C)
31         regr.fit(X_train,Y_train)
32         scores.append(regr.score(X_test,Y_test))
33     fig=plt.figure()
34     ax=fig.add_subplot(1,1,1)
35     ax.plot(Cs,scores)
36     ax.set_xlabel(r"C")
37     ax.set_ylabel(r"score")
38     ax.set_xscale(log)
39     ax.set_title("logisticRegression")
40     plt.show()
41 
42 X_train,X_test,Y_train,Y_test=load_data()
43 test_LogisticRegression(X_train,X_test,Y_train,Y_test)
44 test_LogisticRegression_multionmial(X_train,X_test,Y_train,Y_test)
45 test_LogisticRegression_C(X_train,X_test,Y_train,Y_test)
View Code

结果输出如下:

技术分享

可见多分类策略可以提高准确率。

技术分享

可见随着C的增大,预测的准确率也是在增大的。当C增大到一定的程度,预测的准确率维持在较高的水准保持不变。

 2.6 线性判别分析

  这里同样适用鸢尾花的数据,具体代码如下:

技术分享
 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 from sklearn import datasets,linear_model,discriminant_analysis,cross_validation
 4 
 5 def load_data():
 6     iris=datasets.load_iris()
 7     X_train=iris.data
 8     Y_train=iris.target
 9     return cross_validation.train_test_split(X_train,Y_train,test_size=0.25,random_state=0,stratify=Y_train)
10 
11 def test_LinearDiscriminantAnalysis(*data):
12     X_train,X_test,Y_train,Y_test=data
13     lda=discriminant_analysis.LinearDiscriminantAnalysis()
14     lda.fit(X_train,Y_train)
15     print("Coefficients:%s, intercept %s"%(lda.coef_,lda.intercept_))
16     print("Score:%.2f"%lda.score(X_test,Y_test))
17 
18 
19 
20 def plot_LDA(converted_X,Y):
21     from mpl_toolkits.mplot3d import Axes3D
22     fig=plt.figure()
23     ax=Axes3D(fig)
24     colors=rgb
25     markers=o*s
26     for target,color,marker in zip([0,1,2],colors,markers):
27         pos=(Y==target).ravel()
28         X=converted_X[pos,:]
29         ax.scatter(X[:,0],X[:,1],X[:,2],color=color,marker=marker,label="Label %d"%target)
30     ax.legend(loc="best")
31     fig.suptitle("Iris After LDA")
32     plt.show()
33 
34 X_train,X_test,Y_train,Y_test=load_data()
35 test_LinearDiscriminantAnalysis(X_train,X_test,Y_train,Y_test)
36 X=np.vstack((X_train,X_test))
37 Y=np.vstack((Y_train.reshape(Y_train.size,1),Y_test.reshape(Y_test.size,1)))
38 lda=discriminant_analysis.LinearDiscriminantAnalysis()
39 lda.fit(X,Y)
40 converted_X=np.dot(X,np.transpose(lda.coef_))+lda.intercept_
41 plot_LDA(converted_X,Y)
View Code

运行结果如下:

技术分享

技术分享

可以看出经过线性判别分析之后,不同种类的鸢尾花之间的间隔较远;相同种类的鸢尾花之间的已经相互聚集了

 

Python大战机器学习