首页 > 代码库 > Kiggle:Digit Recognizer
Kiggle:Digit Recognizer
题目链接:Kiggle:Digit Recognizer
Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total.
给的是28像素的高和宽,所以总共有784像素,在处理的过程中,先用PCA进行降维,对数据进行主要的特征分量;然后通过KNN(K-邻近算法)进行对测试数据的预测分类。
对于PCA算法:主成分分析,是通过线性变质将原始数据转换程一组各维度无关的表示,可以用于提取数据的主要特征分量,用于高维数据的降维。
步骤:
1.将原始数据按行组成n行m列的矩阵X
2.将X的每一行进行零均值化,即减去每一行的均值
3.求出协方差矩阵
4.求出协方差矩阵的特征值以及对应的特征向量
5.将特征向量按对应特征值的大小从上到下按行排序,排列成矩阵,取前K行组成矩阵P
6.Y=PX,即为降维到K维的数据
Kiggle:Digit Recognizer
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。