首页 > 代码库 > 牛顿法、拟牛顿法以及与梯度下降法的对比

牛顿法、拟牛顿法以及与梯度下降法的对比

牛顿法、拟牛顿法相关资料:

http://www.cnblogs.com/richqian/p/4535550.html

https://www.codelast.com/%E5%8E%9F%E5%88%9B%E6%8B%9F%E7%89%9B%E9%A1%BF%E6%B3%95quasi-newton%EF%BC%8Cdfp%E7%AE%97%E6%B3%95davidon-fletcher-powell%EF%BC%8C%E5%8F%8Abfgs%E7%AE%97%E6%B3%95broyden-fletcher-goldfarb-shanno/

http://blog.csdn.net/itplus/article/details/21896981


 

牛顿法为什么比梯度下降法求解需要的迭代次数更少?

牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。
根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

1. 牛顿法起始点不能离局部极小点太远,否则很可能不会收敛。(考虑到二阶拟合应该很容易想象),所以实际操作中会先使用别的方法,比如梯度下降法,使更新的点离最优点比较近,再开始用牛顿法。
2. 牛顿法每次需要更新一个二阶矩阵,当维数增加的时候是非常耗内存的,所以实际使用是会用拟牛顿法。
3. 梯度下降法在非常靠近最优点时会有震荡,就是说明明离的很近了,却很难到达,因为线性的逼近非常容易一个方向过去就过了最优点(因为只能是负梯度方向)。但牛顿法因为是二次收敛就很容易到达了。

牛顿法最明显快的特点是对于二阶函数(考虑多元函数的话要在凸函数的情况下),牛顿法能够一步到达,非常有效。


牛顿法是算当前位置的Hessian矩阵,拟牛顿法是根据最近几个迭代点的信息(包括点的位置本身和梯度)猜当前位置的Hessian矩阵。其他部分一样。

https://www.zhihu.com/question/19723347

 

牛顿法、拟牛顿法以及与梯度下降法的对比