首页 > 代码库 > java5中的锁1
java5中的锁1
本文可作为传智播客《张孝祥-Java多线程与并发库高级应用》的学习笔记。
最后的部分结果
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
b
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
为什么会这样?
很简单,在输出b的时候,还没有输出完,a线程(打印a的那个线程)已经抢到了控制权,开始打印a,等a线程将a输出完后,并且打印了一个回车后,b线程才抢回系统控制权,打印它上一次最后剩下的一个b。
要解决上面的问题很简单:
就上面的例子而言我们是否还有更好的方法呢?
有。
java5中提供了一种更加面向对象的技术类解决多线程之间的互斥问题-----锁。
java.util.concurrent.locks Interface Lock
锁技术的核心就是Lock及它的实现类。
另外为什么标识2出的释放锁放到了finally里,大家应该明白了吧。
对共有资源操作的时候,我们应该遵循三大准则:
1 当一个线程对资源进行写操作的时候,别的线程既不能对资源读也不能对资源写。
2 当一个线程对资源进行读操作的时候,别的线程不能对资源写。
3 当一个线程对资源进行读操作的时候,别的线程能对资源读。
一二准则保证了系统的正确性。第三准则能提高系统的性能。 毕竟多个线程对资源进行读操作是可以的。
看下面这个既有读又有写的例子。
Thread-0 be ready to read data!
Thread-1 be ready to write data!
Thread-2 be ready to read data!
Thread-3 be ready to write data!
Thread-4 be ready to read data!
Thread-5 be ready to write data!
Thread-0have read data :null
Thread-0 be ready to read data!
Thread-3 have write data: 5280
Thread-3 be ready to write data!
Thread-1 have write data: 5839
Thread-1 be ready to write data!
Thread-4have read data :5839
我们可以看到 读中有写 写中有写 写中有读 完全乱套了。
我们试试个两个方法加上synchronized 结果如下
Thread-0 be ready to read data!
Thread-0have read data :null
Thread-5 be ready to write data!
Thread-5 have write data: 7931
Thread-5 be ready to write data!
Thread-5 have write data: 9564
Thread-5 be ready to write data!
Thread-5 have write data: 1203
Thread-5 be ready to write data!
Thread-5 have write data: 8870
Thread-4 be ready to read data!
Thread-4have read data :8870
Thread-3 be ready to write data!
Thread-3 have write data: 9334
Thread-3 be ready to write data!
Thread-3 have write data: 2680
Thread-3 be ready to write data!
Thread-3 have write data: 9948
Thread-3 be ready to write data!
Thread-3 have write data: 375
Thread-2 be ready to read data!
读与写完全互斥,读的时候不写,写的时候不读。满足一二准则。
java.util.concurrent.locks Interface ReadWriteLock
ReadWriteLock有两个方法
Lock readLock() Returns the lock used for reading.
Lock writeLock() Returns the lock used for writing.
得到两种锁后,就可以调用锁的lock与unlock方法了。
一般使用它的子类ReentrantReadWriteLock来产生ReadWriteLock
其签名如下:
Thread-5 have write data: 7329
Thread-0 be ready to read data!
Thread-0 have read data :7329
Thread-1 be ready to write data!
Thread-1 have write data: 1361
Thread-2 be ready to read data!
Thread-4 be ready to read data!
Thread-0 be ready to read data!
Thread-2 have read data :1361
Thread-2 be ready to read data!
Thread-4 have read data :1361
我们可以看到 线程1的写是完全互斥的。
一个简单的例子
两个线程,一个不断打印a,一个不断打印bpublic class LockTest { public static void main(String[] args){ final Outputer outputer = new Outputer(); new Thread(new Runnable(){ @Override public void run() { while(true){ try { Thread.sleep(10); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } outputer.output("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"); } } }).start(); new Thread(new Runnable(){ @Override public void run() { while(true){ try { Thread.sleep(10); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } outputer.output("bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"); }//a的数量与b的数量一致 } }).start(); } static class Outputer{ public void output(String name){ int len = name.length(); try{ for(int i=0;i<len;i++){ System.out.print(name.charAt(i)); } System.out.println(); }finally{ } } } }
最后的部分结果
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
b
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
为什么会这样?
很简单,在输出b的时候,还没有输出完,a线程(打印a的那个线程)已经抢到了控制权,开始打印a,等a线程将a输出完后,并且打印了一个回车后,b线程才抢回系统控制权,打印它上一次最后剩下的一个b。
要解决上面的问题很简单:
static class Outputer{ public synchronized void output(String name){ int len = name.length(); //..... } }这样一来,我们就保证了Outputer类里的output方法是原子性的,不会有两个线程同时执行它。
就上面的例子而言我们是否还有更好的方法呢?
有。
java5中提供了一种更加面向对象的技术类解决多线程之间的互斥问题-----锁。
java.util.concurrent.locks Interface Lock
锁技术的核心就是Lock及它的实现类。
基本锁
上面的例子如果使用锁,代码如下static class Outputer{ Lock lock = new ReentrantLock(); public void output(String name){ int len = name.length(); lock.lock(); //标识1 try{ for(int i=0;i<len;i++){ System.out.print(name.charAt(i)); } System.out.println(); }finally{ lock.unlock(); //标识2 } }线程a执行到上面代码的标识1处加锁,当线程a在输出字符a时,线程b也执行到了标识1处。此时线程b是不能获得锁的。它被阻塞到标识1处,直到线程a打印完之后在标识2处释放了锁。(线程a线程b共用一把锁,也就是Lock lock = new ReentrantLock())
另外为什么标识2出的释放锁放到了finally里,大家应该明白了吧。
读与写
上面的问题中output的主体(len是方法内部的局部变量,为每个线程自有,互不干涉)被全部互斥,它保证了任何时候,都只有一个线程执行标识1与标识2直接的代码。
但是我们得意识到:对共有数据的操作,基本可以分为两类,读与写。对共有资源操作的时候,我们应该遵循三大准则:
1 当一个线程对资源进行写操作的时候,别的线程既不能对资源读也不能对资源写。
2 当一个线程对资源进行读操作的时候,别的线程不能对资源写。
3 当一个线程对资源进行读操作的时候,别的线程能对资源读。
一二准则保证了系统的正确性。第三准则能提高系统的性能。 毕竟多个线程对资源进行读操作是可以的。
看下面这个既有读又有写的例子。
public class ReadWriteLockTest { public static void main(String[] args) { final Queue3 q3 = new Queue3(); for(int i=0;i<3;i++) { new Thread(){ public void run(){ while(true){ q3.get(); } } }.start(); new Thread(){ public void run(){ while(true){ q3.put(new Random().nextInt(10000)); } } }.start(); } } } class Queue3{ private Object data = null;//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。 public void get(){ try { System.out.println(Thread.currentThread().getName() + " be ready to read data!"); Thread.sleep((long)(Math.random()*1000)); System.out.println(Thread.currentThread().getName() + "have read data :" + data); } catch (InterruptedException e) { e.printStackTrace(); } } public void put(Object data){ try { System.out.println(Thread.currentThread().getName() + " be ready to write data!"); Thread.sleep((long)(Math.random()*1000)); this.data = data; System.out.println(Thread.currentThread().getName() + " have write data: " + data); } catch (InterruptedException e) { e.printStackTrace(); } } }结果如下
Thread-0 be ready to read data!
Thread-1 be ready to write data!
Thread-2 be ready to read data!
Thread-3 be ready to write data!
Thread-4 be ready to read data!
Thread-5 be ready to write data!
Thread-0have read data :null
Thread-0 be ready to read data!
Thread-3 have write data: 5280
Thread-3 be ready to write data!
Thread-1 have write data: 5839
Thread-1 be ready to write data!
Thread-4have read data :5839
我们可以看到 读中有写 写中有写 写中有读 完全乱套了。
我们试试个两个方法加上synchronized 结果如下
Thread-0 be ready to read data!
Thread-0have read data :null
Thread-5 be ready to write data!
Thread-5 have write data: 7931
Thread-5 be ready to write data!
Thread-5 have write data: 9564
Thread-5 be ready to write data!
Thread-5 have write data: 1203
Thread-5 be ready to write data!
Thread-5 have write data: 8870
Thread-4 be ready to read data!
Thread-4have read data :8870
Thread-3 be ready to write data!
Thread-3 have write data: 9334
Thread-3 be ready to write data!
Thread-3 have write data: 2680
Thread-3 be ready to write data!
Thread-3 have write data: 9948
Thread-3 be ready to write data!
Thread-3 have write data: 375
Thread-2 be ready to read data!
读与写完全互斥,读的时候不写,写的时候不读。满足一二准则。
读写锁
为了实现准则三,在java5中的出现了读写锁。java.util.concurrent.locks Interface ReadWriteLock
ReadWriteLock有两个方法
Lock readLock() Returns the lock used for reading.
Lock writeLock() Returns the lock used for writing.
得到两种锁后,就可以调用锁的lock与unlock方法了。
一般使用它的子类ReentrantReadWriteLock来产生ReadWriteLock
其签名如下:
public class ReentrantReadWriteLock extends Object implements ReadWriteLock, Serializable看看使用方法
class Queue3{ private Object data = null;//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。 ReadWriteLock rwl = new ReentrantReadWriteLock(); public void get(){ rwl.readLock().lock(); try { System.out.println(Thread.currentThread().getName() + " be ready to read data!"); Thread.sleep(20); System.out.println(Thread.currentThread().getName() + " have read data :" + data); } catch (InterruptedException e) { e.printStackTrace(); }finally{ rwl.readLock().unlock(); } } public void put(Object data){ rwl.writeLock().lock(); try { System.out.println(Thread.currentThread().getName() + " be ready to write data!"); Thread.sleep(20); this.data = data; System.out.println(Thread.currentThread().getName() + " have write data: " + data); } catch (InterruptedException e) { e.printStackTrace(); }finally{ rwl.writeLock().unlock(); } } }结果如下
Thread-5 have write data: 7329
Thread-0 be ready to read data!
Thread-0 have read data :7329
Thread-1 be ready to write data!
Thread-1 have write data: 1361
Thread-2 be ready to read data!
Thread-4 be ready to read data!
Thread-0 be ready to read data!
Thread-2 have read data :1361
Thread-2 be ready to read data!
Thread-4 have read data :1361
我们可以看到 线程1的写是完全互斥的。
而线程2 4 0的读是可以同步进行的。
这是读写锁最简单的例子,下一节,我们看一个稍微复杂的,把读锁与写锁放到一个方法内的例子。
感谢glt
java5中的锁1
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。