首页 > 代码库 > 【leetcode刷题笔记】Unique Paths II

【leetcode刷题笔记】Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[  [0,0,0],  [0,1,0],  [0,0,0]]

The total number of unique paths is 2.

Note: m and n will be at most 100.


 

题解:和http://www.cnblogs.com/sunshineatnoon/p/3798167.html非常相似,要注意两点:

  1. 有障碍的地方能走到的方法数目是0;
  2. 初始化结果矩阵的时候,如果第一行(列)的某个位置有障碍,那么这一行(列)该元素后面所有的元素都是0,不能置为1;比如给定障碍矩阵[1,0,0],那么初始化以后的矩阵应该为[0,0,0],而不是[0,1,1],因为(0,0)处有障碍,那么该矩阵的任何位置都是无法到达的。

代码如下:

 1 public class Solution { 2     public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3         int m = obstacleGrid.length; 4         int n = obstacleGrid[0].length; 5         if(m==0 && n == 0) 6             return 0; 7          8         int[][] PathNum = new int[m][n]; 9         for(int i = 0;i < m;i++)10             if(obstacleGrid[i][0] != 1)11                 PathNum[i][0] = 1;12             else 13                 break;14         for(int i = 0;i < n;i++)15             if(obstacleGrid[0][i] != 1)16                 PathNum[0][i] = 1;17             else18                 break;19         20         for(int i = 1;i < m;i++)21             for(int j = 1;j < n;j++){22                 if(obstacleGrid[i][j] != 1)23                     PathNum[i][j] = PathNum[i-1][j]+PathNum[i][j-1]; 24             }25         26         return PathNum[m-1][n-1];27     }28 }