首页 > 代码库 > 7月28--字典树
7月28--字典树
又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希表高。
Trie的数据结构定义:
#define MAX 26
typedef struct Trie
{
Trie *next[MAX];
int v; //根据需要变化
};
Trie *root;
typedef struct Trie
{
Trie *next[MAX];
int v; //根据需要变化
};
Trie *root;
生成字典树:
void createTrie(char *str)
{
int len = strlen(str);
Trie *p = root, *q;
for(int i=0; i<len; ++i)
{
int id = str[i]-‘0‘;
if(p->next[id] == NULL)
{
q = (Trie *)malloc(sizeof(Trie));
q->v = 1; //初始v==1
for(int j=0; j<MAX; ++j)
q->next[j] = NULL;
p->next[id] = q;
p = p->next[id];
}
else
{
p->next[id]->v++;
p = p->next[id];
}
}
p->v = -1; //若为结尾,则将v改成-1表示
}
{
int len = strlen(str);
Trie *p = root, *q;
for(int i=0; i<len; ++i)
{
int id = str[i]-‘0‘;
if(p->next[id] == NULL)
{
q = (Trie *)malloc(sizeof(Trie));
q->v = 1; //初始v==1
for(int j=0; j<MAX; ++j)
q->next[j] = NULL;
p->next[id] = q;
p = p->next[id];
}
else
{
p->next[id]->v++;
p = p->next[id];
}
}
p->v = -1; //若为结尾,则将v改成-1表示
}
接下来是查找的过程了:
int findTrie(char *str)
{
int len = strlen(str);
Trie *p = root;
for(int i=0; i<len; ++i)
{
int id = str[i]-‘0‘;
p = p->next[id];
if(p == NULL) //若为空集,表示不存以此为前缀的串
return 0;
if(p->v == -1) //字符集中已有串是此串的前缀
return -1;
}
return -1; //此串是字符集中某串的前缀
}
{
int len = strlen(str);
Trie *p = root;
for(int i=0; i<len; ++i)
{
int id = str[i]-‘0‘;
p = p->next[id];
if(p == NULL) //若为空集,表示不存以此为前缀的串
return 0;
if(p->v == -1) //字符集中已有串是此串的前缀
return -1;
}
return -1; //此串是字符集中某串的前缀
}
对于上述动态字典树,有时会超内存,所以要释放空间。
int dealTrie(Trie* T)
{
int i;
if(T==NULL)
return 0;
for(i=0;i<MAX;i++)
{
if(T->next[i]!=NULL)
deal(T->next[i]);
}
free(T);
return 0;
}
{
int i;
if(T==NULL)
return 0;
for(i=0;i<MAX;i++)
{
if(T->next[i]!=NULL)
deal(T->next[i]);
}
free(T);
return 0;
}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。