首页 > 代码库 > HDU 1018 Big Number 数学题解
HDU 1018 Big Number 数学题解
Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
本题就考查斯特林公式。因为斯特林公式是求解n!的近似公式,而本题只需要求解有多少位。
底层数学原理就是求一个数n的数位可以使用 digits = log10(n)
然后利用斯特林公式求出n!的近似值就可以利用log10来求得数位了。
斯特林公式百度百科有,这里不重复了。
float不能AC的时候,就使用double吧。
#include <stdio.h> #include <math.h> const float PI = 3.14159265358979323846f; inline int getDigits(int n) { float num = float(n); int ans = (int)(0.5*log10(2.0*PI*num) + num*(log(num)-1)/log(10.0)) + 1; return ans; } int main() { int T, n; scanf("%d", &T); while (T--) { scanf("%d", &n); printf("%d\n", getDigits(n)); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。