首页 > 代码库 > HDU 1018 Big Number (log函数求数的位数)
HDU 1018 Big Number (log函数求数的位数)
Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of
the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
123456=1.23456*10^5;
log10(123456)=5.09151;
log10(1.23456*10^5)=log10(1.23456)+log10(10^5)=0.09151+5;
故int(log10(n))+1 就是n的位数
log10(123456)=5.09151;
log10(1.23456*10^5)=log10(1.23456)+log10(10^5)=0.09151+5;
故int(log10(n))+1 就是n的位数
1、x的位数=(int)log10(x)+1;
2、斯特林近似公式:n!≈sqrt(2*π*n)*(n/e)^n。
2、斯特林近似公式:n!≈sqrt(2*π*n)*(n/e)^n。
#include<iostream> #include<cmath> #include<cstdio> using namespace std; int main() { int i,t,n; double ans; cin>>t; while(t--){ cin>>n; ans=0; for(i=1;i<=n;i++) { ans+=log10(double(i)); } printf("%d\n",int(ans)+1); } return 0; }
HDU 1018 Big Number (log函数求数的位数)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。