首页 > 代码库 > ZOJ 2112 Dynamic Rankings(主席树の动态kth)

ZOJ 2112 Dynamic Rankings(主席树の动态kth)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2112

The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], ..., a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], ..., a[j]? (For some i<=j, 0<k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.

Your task is to write a program for this computer, which

- Reads N numbers from the input (1 <= N <= 50,000)

- Processes M instructions of the input (1 <= M <= 10,000). These instructions include querying the k-th smallest number of a[i], a[i+1], ..., a[j] and change some a[i] to t.


Input

The first line of the input is a single number X (0 < X <= 4), the number of the test cases of the input. Then X blocks each represent a single test case.

The first line of each block contains two integers N and M, representing N numbers and M instruction. It is followed by N lines. The (i+1)-th line represents the number a[i]. Then M lines that is in the following format

Q i j k or
C i t

It represents to query the k-th number of a[i], a[i+1], ..., a[j] and change some a[i] to t, respectively. It is guaranteed that at any time of the operation. Any number a[i] is a non-negative integer that is less than 1,000,000,000.

There‘re NO breakline between two continuous test cases.


Output

For each querying operation, output one integer to represent the result. (i.e. the k-th smallest number of a[i], a[i+1],..., a[j])

There‘re NO breakline between two continuous test cases.

 

题目大意:给n个数,有m个操作。修改某个数,或者询问一段区间的第k小值。

思路:首先要知道没有修改操作的区间第k大怎么用出席树写:POJ 2104 K-th Number(主席树——附讲解)

至于动态kth的解法可以去看CLJ的《可持久化数据结构研究》(反正我是看这个才懂的),然后在网上查一些资料,YY一下就可以了。

这里写的是树状数组套线段树+可持久化线段树的做法(因为内存不够用)。

简单的讲就是通过树状数组求和,维护前k个线段树的和。时间复杂度为O(nlogn+m(logn)^2)

另参考资料(里面有好几个link :)):http://www.cnblogs.com/kuangbin/p/3308118.html

PS:ZOJ的指针似乎不是4个字节的。这里用指针就要MLE了(代码本来不是这么丑的啊T_T)。

 

代码(130MS):

  1 #include <cstdio>  2 #include <iostream>  3 #include <algorithm>  4 #include <cstring>  5 using namespace std;  6 typedef long long LL;  7   8 const int MAXN = 50010;  9 const int MAXM = 10010; 10 const int MAXT = MAXM * 15 * 16; 11  12 struct Query { 13     char op; 14     int i, j, k; 15     void read() { 16         scanf(" %c", &op); 17         if(op == Q) scanf("%d%d%d", &i, &j, &k); 18         else scanf("%d%d", &i, &k); 19     } 20 } query[MAXM]; 21 int a[MAXN]; 22 int n, m, T; 23 //hashmap 24 int arr[MAXN + MAXM], total; 25  26 void buildHash() { 27     total = 0; 28     for(int i = 1; i <= n; ++i) arr[total++] = a[i]; 29     for(int i = 1; i <= m; ++i) 30         if(query[i].op == C) arr[total++] = query[i].k; 31     sort(arr, arr + total); 32     total = unique(arr, arr + total) - arr; 33 } 34  35 int hash(int x) { 36     return lower_bound(arr, arr + total, x) - arr; 37 } 38 //Chairman tree 39 struct Node { 40     int lson, rson, sum; 41     void clear() { 42         lson = rson = sum = 0; 43     } 44 } tree[MAXT]; 45 int root[MAXN]; 46 int tcnt; 47  48 void insert(int& rt, int l, int r, int pos) { 49     tree[tcnt] = tree[rt]; rt = tcnt++; 50     tree[rt].sum++; 51     if(l < r) { 52         int mid = (l + r) >> 1; 53         if(pos <= mid) insert(tree[rt].lson, l, mid, pos); 54         else insert(tree[rt].rson, mid + 1, r, pos); 55     } 56 } 57  58 void buildTree() { 59     tcnt = 1; 60     for(int i = 1; i <= n; ++i) { 61         root[i] = root[i - 1]; 62         insert(root[i], 0, total - 1, hash(a[i])); 63     } 64 } 65 //Binary Indexed Trees 66 int root2[MAXN]; 67 int roota[50], rootb[50]; 68 int cnta, cntb; 69  70 void initBIT() { 71     for(int i = 1; i <= n; ++i) root2[i] = 0; 72 } 73  74 inline int lowbit(int x) { 75     return x & -x; 76 } 77  78 void insert(int& rt, int l, int r, int pos, int val) { 79     if(rt == 0) tree[rt = tcnt++].clear(); 80     if(l == r) { 81         tree[rt].sum += val; 82     } else { 83         int mid = (l + r) >> 1; 84         if(pos <= mid) insert(tree[rt].lson, l, mid, pos, val); 85         else insert(tree[rt].rson, mid + 1, r, pos, val); 86         tree[rt].sum = tree[tree[rt].lson].sum + tree[tree[rt].rson].sum; 87     } 88 } 89  90 int kth(int ra, int rb, int l, int r, int k) { 91     if(l == r) { 92         return l; 93     } else { 94         int sum = tree[tree[rb].lson].sum - tree[tree[ra].lson].sum, mid = (l + r) >> 1; 95         for(int i = 0; i < cntb; ++i) sum += tree[tree[rootb[i]].lson].sum; 96         for(int i = 0; i < cnta; ++i) sum -= tree[tree[roota[i]].lson].sum; 97         if(sum >= k) { 98             for(int i = 0; i < cntb; ++i) rootb[i] = tree[rootb[i]].lson; 99             for(int i = 0; i < cnta; ++i) roota[i] = tree[roota[i]].lson;100             return kth(tree[ra].lson, tree[rb].lson, l, mid, k);101         } else {102             for(int i = 0; i < cntb; ++i) rootb[i] = tree[rootb[i]].rson;103             for(int i = 0; i < cnta; ++i) roota[i] = tree[roota[i]].rson;104             return kth(tree[ra].rson, tree[rb].rson, mid + 1, r, k - sum);105         }106     }107 }108 //Main operation109 void modify(int k, int val) {110     int x = hash(a[k]), y = hash(val);111     a[k] = val;112     while(k <= n) {113         insert(root2[k], 0, total - 1, x, -1);114         insert(root2[k], 0, total - 1, y, 1);115         k += lowbit(k);116     }117 }118 119 int kth(int l, int r, int k) {120     cnta = cntb = 0;121     for(int i = l - 1; i; i -= lowbit(i)) roota[cnta++] = root2[i];122     for(int i = r; i; i -= lowbit(i)) rootb[cntb++] = root2[i];123     return kth(root[l - 1], root[r], 0, total - 1, k);124 }125 126 int main() {127     scanf("%d", &T);128     while(T--) {129         scanf("%d%d", &n, &m);130         for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);131         for(int i = 1; i <= m; ++i) query[i].read();132         buildHash();133         buildTree();134         initBIT();135         for(int i = 1; i <= m; ++i) {136             if(query[i].op == Q) printf("%d\n", arr[kth(query[i].i, query[i].j, query[i].k)]);137             else modify(query[i].i, query[i].k);138         }139     }140 }
View Code