首页 > 代码库 > poj 1845(等比数列前n项和及快速幂)
poj 1845(等比数列前n项和及快速幂)
Sumdiv
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 13959 | Accepted: 3433 |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
Source
Romania OI 2002
思路看:
http://hi.baidu.com/necsinmyway/item/9f10b6d96c5068fbb2f77740
AC代码:
#include<iostream> using namespace std; #define LL long long LL pow_mod(LL a,LL n,int mod){ //快速幂 LL r=1; LL base=a; while(n){ if(n&1) r=r*base%mod; base=base*base%mod; n>>=1; } return r%9901; } LL sum(LL a,LL b,LL mod){ //二分求等比数列前N项和 if(b==0) return 1; if(b%2==1) return (sum(a,b/2,mod)*(pow_mod(a,b/2+1,mod)+1))%mod; else return (sum(a,b-1,mod)+pow_mod(a,b,mod))%mod; } int main(){ LL a,b; LL ans; while(cin>>a>>b){ ans=1; for(LL i=2;i*i<=a;i++){ //将a分解为质数的乘积 if(a%i==0){ LL s=0; while(a%i==0){ s++; a/=i; } ans=ans*sum(i%9901,b*s,9901)%9901; } } if(a>=2){ ans=ans*sum(a%9901,b,9901)%9901; } cout<<ans<<endl; } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。