首页 > 代码库 > [ACM] POJ 2593 Max Sequence (动态规划,最大字段和)
[ACM] POJ 2593 Max Sequence (动态规划,最大字段和)
Max Sequence
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 15569 | Accepted: 6538 |
Description
Give you N integers a1, a2 ... aN (|ai| <=1000, 1 <= i <= N).
You should output S.
You should output S.
Input
The input will consist of several test cases. For each test case, one integer N (2 <= N <= 100000) is given in the first line. Second line contains N integers. The input is terminated by a single line with N = 0.
Output
For each test of the input, print a line containing S.
Sample Input
5 -5 9 -5 11 20 0
Sample Output
40
Source
POJ Monthly--2005.08.28,Li Haoyuan
同 POJ 2479http://blog.csdn.net/sr_19930829/article/details/38397435
题意要求为给定一个数字序列,找出两段不相交的子段,使这两个子段的和最大,求出这个最大值。
dp[i]表示 从位置1到i 之间的最大子段和,正向求一遍。然后逆向求最大子段和,比如逆向求出当前位置i的最大字段和为sum,那么 ans= max( ans,dp[i-1]+sum), ans即为答案。
#include <iostream> #include <stdio.h> #include <string.h> using namespace std; const int maxn=100010; const int inf=-0x7fffffff; int dp[maxn]; int num[maxn]; int t,n; void DP()//正向求最大子段和 { memset(dp,0,sizeof(dp)); int sum=inf,b=inf; for(int i=1;i<=n;i++) { if(b>0) b+=num[i]; else b=num[i]; if(b>sum) { sum=b; dp[i]=sum; } } } int main() { while(scanf("%d",&n)!=EOF&&n) { for(int i=1;i<=n;i++) scanf("%d",&num[i]); DP(); int ans=inf,b=0,sum=inf;//逆向求n到i最大字段和,与正向的最大字段和相加,求出最大值 for(int i=n;i>1;i--) { if(b>0) b+=num[i]; else b=num[i]; if(b>sum) sum=b; if(sum+dp[i-1]>ans) ans=sum+dp[i-1]; } printf("%d\n",ans); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。