首页 > 代码库 > nyoj CO-PRIME 莫比乌斯反演

nyoj CO-PRIME 莫比乌斯反演

CO-PRIME

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述

This problem is so easy! Can you solve it?

You are given a sequence which contains n integers a1,a2……an, your task is to find how many pair(ai, aj)(i < j) that ai and aj is co-prime.

 

 
输入
There are multiple test cases.
Each test case conatains two line,the first line contains a single integer n,the second line contains n integers.
All the integer is not greater than 10^5.
输出
For each test case, you should output one line that contains the answer.
样例输入
31 2 3
样例输出
3

思路: http://blog.csdn.net/lyhvoyage/article/details/38455415应该是出题的人吧。

  分析:莫比乌斯反演。

  此题中,设F(d)表示n个数中gcd为d的倍数的数有多少对,f(d)表示n个数中gcd恰好为d的数有多少对,

  则F(d)=∑f(n) (n % d == 0)

  f(d)=∑mu[n / d] * F(n) (n %d == 0)

 上面两个式子是莫比乌斯反演中的式子。

  所以要求互素的数有多少对,就是求f(1)。

  而根据上面的式子可以得出f(1)=∑mu[n] * F(n)。

  所以把mu[]求出来,枚举n就行了,其中mu[i]为i的莫比乌斯函数。

 1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 const int N = 1e5+1; 7  8 int vis[N]; 9 int mu[N];10 int prime[N],cnt;11 int date[N];12 long long ys[N];13 int num[N];14 void init()15 {16     memset(vis,0,sizeof(vis));17     mu[1] = 1;18     cnt = 0;19     for(int i=2;i<N;i++)20     {21         if(!vis[i])22         {23             prime[cnt++] = i;24             mu[i] = -1;25         }26         for(int j = 0;j<cnt&&i*prime[j]<N;j++)27         {28             vis[i*prime[j]] = 1;29             if(i%prime[j]) mu[i*prime[j]] = -mu[i];30             else31             {32                 mu [i *prime[j]] = 0;33                 break;34             }35         }36     }37 }38 int main()39 {40     int n,maxn;41     init();42     while(scanf("%d",&n)>0)43     {44         memset(num,0,sizeof(num));45         memset(ys,0,sizeof(ys));46         maxn = -1;47         for(int i=1;i<=n;i++){48             scanf("%d",&date[i]);49             num[date[i]] ++;50             if(date[i]>maxn) maxn = date[i];51         }52         /***计算F(N)*/53         for(int i=1;i<=maxn;i++)54         {55             for(int j=i;j<=maxn;j=j+i)56             {57                 ys[i] = ys[i] + num[j];58             }59         }60         long long sum = 0;61         for(int i=1;i<=maxn;i++){62             long long tmp = (long long)ys[i] *( ys[i]-1 )/2;63              sum = sum + mu[i]*tmp;64         }65 66         printf("%I64d\n",sum);67     }68     return 0;69 }