首页 > 代码库 > 混合三种背包问题(背包九讲)

混合三种背包问题(背包九讲)

问题:

    如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?

01背包与完全背包的混合:

    考虑到在P01和P02中给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:

for i=1..N
    if 第i件物品属于01背包
        for v=V..0
            f[v]=max{f[v],f[v-c[i]]+w[i]};
    else if 第i件物品属于完全背包
        for v=0..V
            f[v]=max{f[v],f[v-c[i]]+w[i]};

在加上多重背包:

    如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。

    当然,更清晰的写法是调用我们前面给出的三个相关过程。

for i=1..N
    if 第i件物品属于01背包
        ZeroOnePack(c[i],w[i])
    else if 第i件物品属于完全背包
        CompletePack(c[i],w[i])
    else if 第i件物品属于多重背包
        MultiplePack(c[i],w[i],n[i])

在最初写出这三个过程的时候,可能完全没有想到它们会在这里混合应用。我想这体现了编程中抽象的威力。如果你一直就是以这种“抽象出过程”的方式写每一类背包问题的,也非常清楚它们的实现中细微的不同,那么在遇到混合三种背包问题的题目时,一定能很快想到上面简洁的解法,对吗?

-----------------------------------------------------------------

练习:

-----------------------------------------------------------------