首页 > 代码库 > as+bt=1是ab两数互质的充要条件

as+bt=1是ab两数互质的充要条件

as+bt=1是ab两数互质的充要条件

 充分性,ab+bt=1 => (a,b)=1:

   因为as+bt=1,设c=(a,b),则c整除a和b,所以c整除as+bt,即c整除1,所以c=1,即a和b互质

 必要性,(a,b)=1 => ab+bt=1:

   考虑非空集合A={as+bt│s,t为任意整数},不妨设a0是A中最小正整数且a0=as0+bt0,y是A中任意一个元素,

   由带余除法 y=as+bt=q(as0+bt0)+r,0<=r<a0,则r=a(s-qs0)+b(t-qt0)属于A,若r非零则r是A中比a0更小之正整数,矛盾,所以r=0,从而a0整除y,特别地有a0整除a,a0整除b,所以a0整除(a,b)=1,因此a0=1,所以存在整数s0和t0使得as0+bt0=1

参考:http://zhidao.baidu.com/question/69395532.html?qbl=relate_question_0&word=as%2Bbt%20%3D%20%28a%2Cb%29