首页 > 代码库 > poj1061青蛙的约会(扩展欧几里得)

poj1061青蛙的约会(扩展欧几里得)

题目链接:

啊哈哈,点我点我

这道题是扩展欧几里得问题。。。哎,数学太弱了,看了半天才看懂。。。。
如果要相遇的话,则(n-m)*T+p*c=x-y成立,那么进行代换得到a*x+b*y=c,那么就转换成小白上面讲的了,所以用扩展欧几里得算法求得一组解,那么最后得到解的通式为x=x0+k*b/gcd(a,b),那么直接另右式子等于0及可。。还有就是没有解的情况就是c%gcd(a,b)不等于0,那么就没有整数解。。。那么这个问题就得到了解决。。。。

题目:
青蛙的约会
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 90518 Accepted: 16492

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

Source

浙江

代码为:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
__int64 x,y,m,n,l,d,a,b,c,temp;


__int64 gcd(__int64 a,__int64 b)
{
    __int64 t,d;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    d=gcd(b,a%b);
    t=x;
    x=y;
    y=t-(a/b)*y;
    return d;
}


int main()
{
    __int64 x1,k,ans;
    while(~scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l))
    {
        a=n-m;
        b=l;
        c=x-y;
        d=gcd(a,b);
        if(c%d!=0)
        {
            printf("Impossible\n");
            continue;
        }
        x=x*(c/d);//x为原不定方程的一组解。。
        k=-x*d/b;
        ans=x+k*b/d;
        if(ans<0)
            ans=ans+b/d;
        printf("%I64d\n",ans);
    }
    return 0;
}