首页 > 代码库 > hdu 2857 点在直线上的投影+直线的交点
hdu 2857 点在直线上的投影+直线的交点
Mirror and Light
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 814 Accepted Submission(s): 385
Problem Description
The light travels in a straight line and always goes in the minimal path between two points, are the basic laws of optics.
Now, our problem is that, if a branch of light goes into a large and infinite mirror, of course,it will reflect, and leave away the mirror in another direction. Giving you the position of mirror and the two points the light goes in before and after the reflection, calculate the reflection point of the light on the mirror.
You can assume the mirror is a straight line and the given two points can’t be on the different sizes of the mirror.
Now, our problem is that, if a branch of light goes into a large and infinite mirror, of course,it will reflect, and leave away the mirror in another direction. Giving you the position of mirror and the two points the light goes in before and after the reflection, calculate the reflection point of the light on the mirror.
You can assume the mirror is a straight line and the given two points can’t be on the different sizes of the mirror.
Input
The first line is the number of test case t(t<=100).
The following every four lines are as follow:
X1 Y1
X2 Y2
Xs Ys
Xe Ye
(X1,Y1),(X2,Y2) mean the different points on the mirror, and (Xs,Ys) means the point the light travel in before the reflection, and (Xe,Ye) is the point the light go after the reflection.
The eight real number all are rounded to three digits after the decimal point, and the absolute values are no larger than 10000.0.
The following every four lines are as follow:
X1 Y1
X2 Y2
Xs Ys
Xe Ye
(X1,Y1),(X2,Y2) mean the different points on the mirror, and (Xs,Ys) means the point the light travel in before the reflection, and (Xe,Ye) is the point the light go after the reflection.
The eight real number all are rounded to three digits after the decimal point, and the absolute values are no larger than 10000.0.
Output
Each lines have two real number, rounded to three digits after the decimal point, representing the position of the reflection point.
Sample Input
10.000 0.0004.000 0.0001.000 1.0003.000 1.000
Sample Output
2.000 0.000
Source
2009 Multi-University Training Contest 5 - Host by NUDT
题目大意:给一面镜子(一直线),给一入射光经过的点跟反射光经过的点,求入射点。
思路:求一个点关于镜子的对称点,与另一点与镜子的交点就是入射点。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 using namespace std; 6 7 const double eps=1e-10; 8 const double Pi=acos(-1.0); 9 struct Point10 {11 double x,y;12 Point(double x=0,double y=0):x(x),y(y) {}13 };14 typedef Point Vector;15 Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}16 Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}17 Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}18 int dcmp(double x)19 {20 if(fabs(x)<eps) return 0;21 else return x<0?-1:1;22 }23 24 double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积25 double Length(Vector A){return sqrt(Dot(A,A));}//向量的长度26 double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//两向量的夹角27 double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积28 Point GetLineProjection(Point P,Point A,Point B)//P在直线AB上的投影点29 {30 Vector v=B-A;31 return A+v*(Dot(v,P-A)/Dot(v,v));32 }33 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点34 {35 Vector u=P-Q;36 double t=Cross(w,u)/Cross(v,w);37 return P+v*t;38 }39 40 Point read_point()41 {42 Point p;43 scanf("%lf%lf",&p.x,&p.y);44 return p;45 }46 int main()47 {48 int t;49 Point p1,p2,p3,p4,p5;50 scanf("%d",&t);51 while(t--)52 {53 p1=read_point();p2=read_point();p3=read_point();p4=read_point();54 p5= GetLineProjection(p3,p1,p2);55 p5=p3+(p5-p3)*2;56 p5=GetLineIntersection(p5,p5-p4,p1,p2-p1);57 printf("%.3lf %.3lf\n",p5.x,p5.y);58 }59 return 0;60 }
hdu 2857 点在直线上的投影+直线的交点
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。