首页 > 代码库 > acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

GCD SUM

Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others)
SubmitStatisticNext Problem

Problem Description

给出N,M
执行如下程序:
long long  ans = 0,ansx = 0,ansy = 0;
for(int i = 1; i <= N; i ++)
   for(int j = 1; j <= M; j ++)
       if(gcd(i,j) == 1) ans ++,ansx += i,ansy += j;
cout << ans << " " << ansx << " " << ansy << endl;

Input

多组数据,每行两个数N,M(1 <= N,M <= 100000)。

 

Output

如题所描述,每行输出3个数,ans,ansx,ansy,空格隔开

Sample Input

5 51 3

Sample Output

19 55 553 3 6

Hint

总数据小于50000
 
对于第一个数字比较容易,用莫比乌斯反演直接就能做。
对于ansx,和ansy是同类问题。现在讨论ansx的做法.
我们设f(d) 代表1<=x<=N,1<=y<=M,gcd(x,y)=d 时,x的求和.
我们设F(d) 代表 1<=x<=N,1<=y<=M,gcd(x,y)为d的倍数时,x的求和
所以F(1) = f(1)+f(2)+f(3)......f(min(N,M))
     F(2) = f(2)+f(4)+f(6)....f(min(N/2,M/2));
     F(i) = f(i)+f(i*2)+f(i*3)....f(min(N/i,M/i));
 
由此我们可得 
由于d = 1 ;所以
对于的反演为
然后可以对mu[i]*i进行筛选,求前N项和。用分块来完成。
代码:
 1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 typedef long long LL; 7  8 const int maxn = 1e5+3; 9 bool s[maxn];10 int prime[maxn],len = 0;11 int mu[maxn];12 LL hxl [maxn];13 int sum1[maxn];14 void  init()15 {16     memset(s,true,sizeof(s));17     mu[1] = 1;18     for(int i=2;i<maxn;i++)19     {20         if(s[i] == true)21         {22             prime[++len]  = i;23             mu[i] = -1;24         }25         for(int j=1;j<=len && (long long)prime[j]*i<maxn;j++)26         {27             s[i*prime[j]] = false;28             if(i%prime[j]!=0)29                 mu[i*prime[j]] = -mu[i];30             else31             {32                 mu[i*prime[j]] = 0;33                 break;34             }35         }36     }37     for(int i=1;i<maxn;i++)38         sum1[i] = sum1[i-1]+mu[i];39     hxl[1] = mu[1];40     for(int i=2;i<maxn;i++){41         hxl[i] = i*mu[i]+hxl[i-1];42     }43 }44 int main()45 {46     init();47     int n,m;48     while(scanf("%d%d",&n,&m)>0)49     {50         LL sum = 0;51         LL ansi = 0,ansj = 0;52         int a = n;53         int b = m;54         if(a>b) swap(a,b);55         for(int i=1,la = 0;i<=a;i++,i = la+1)56         {57             la = min(a/(a/i),b/(b/i));58             sum = sum + ((LL)(a/i))*(b/i)*(sum1[la]-sum1[i-1]);59             ansi = ansi +(hxl[la]-hxl[i-1])*(((LL)(n/i+1)*(n/i))/2)*(m/i);60             ansj = ansj +(hxl[la]-hxl[i-1])*(((LL)(m/i+1)*(m/i))/2)*(n/i);61         }62         printf("%lld %lld %lld\n",sum,ansi,ansj);63     }64     return 0;65 }

 

acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy