首页 > 代码库 > POJ 3037 Skiing
POJ 3037 Skiing
Skiing
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 4810 | Accepted: 1287 | Special Judge |
Description
Bessie and the rest of Farmer John‘s cows are taking a trip this winter to go skiing. One day Bessie finds herself at the top left corner of an R (1 <= R <= 100) by C (1 <= C <= 100) grid of elevations E (-25 <= E <= 25). In order to join FJ and the other cows at a discow party, she must get down to the bottom right corner as quickly as she can by travelling only north, south, east, and west.
Bessie starts out travelling at a initial speed V (1 <= V <= 1,000,000). She has discovered a remarkable relationship between her speed and her elevation change. When Bessie moves from a location of height A to an adjacent location of eight B, her speed is multiplied by the number 2^(A-B). The time it takes Bessie to travel from a location to an adjacent location is the reciprocal of her speed when she is at the first location.
Find the both smallest amount of time it will take Bessie to join her cow friends.
Bessie starts out travelling at a initial speed V (1 <= V <= 1,000,000). She has discovered a remarkable relationship between her speed and her elevation change. When Bessie moves from a location of height A to an adjacent location of eight B, her speed is multiplied by the number 2^(A-B). The time it takes Bessie to travel from a location to an adjacent location is the reciprocal of her speed when she is at the first location.
Find the both smallest amount of time it will take Bessie to join her cow friends.
Input
* Line 1: Three space-separated integers: V, R, and C, which respectively represent Bessie‘s initial velocity and the number of rows and columns in the grid.
* Lines 2..R+1: C integers representing the elevation E of the corresponding location on the grid.
* Lines 2..R+1: C integers representing the elevation E of the corresponding location on the grid.
Output
A single number value, printed to two exactly decimal places: the minimum amount of time that Bessie can take to reach the bottom right corner of the grid.
Sample Input
1 3 31 5 36 3 52 4 3
Sample Output
29.00
Hint
Bessie‘s best route is:
Start at 1,1 time 0 speed 1
East to 1,2 time 1 speed 1/16
South to 2,2 time 17 speed 1/4
South to 3,2 time 21 speed 1/8
East to 3,3 time 29 speed 1/4
Start at 1,1 time 0 speed 1
East to 1,2 time 1 speed 1/16
South to 2,2 time 17 speed 1/4
South to 3,2 time 21 speed 1/8
East to 3,3 time 29 speed 1/4
Source
USACO 2005 October Gold
1 #include<iostream> 2 #include<cstdio> 3 #include<queue> 4 #include<cstring> 5 #include<cmath> 6 using namespace std; 7 const int maxn=105; 8 const double Max_double=11258999068426240000; 9 bool exist[maxn][maxn];10 struct node{11 int x,y;12 };13 node p;14 double dis[maxn][maxn];15 int map[maxn][maxn],v,n,m;16 int dir[][2]={{0,-1},{1,0},{0,1},{-1,0}};17 queue<node>q;18 double SPFA(){19 p.y=1;p.x=1;20 dis[1][1]=0;exist[1][1]=true;21 q.push(p);22 while(!q.empty()){23 p=q.front();q.pop();24 exist[p.x][p.y]=false;25 double k=1.0/(v * pow(2, 1.0*(map[1][1]-map[p.x][p.y])));26 for(int i=0;i<4;i++){27 int nex=p.x+dir[i][0],ney=p.y+dir[i][1];28 if(nex>=1&&nex<=n&&ney>=1&&ney<=m){29 if(dis[nex][ney]>dis[p.x][p.y]+k){30 dis[nex][ney]=dis[p.x][p.y]+k;31 if(exist[nex][ney]==false){32 node tmp;33 tmp.x=nex;tmp.y=ney;34 q.push(tmp);exist[nex][ney]=true;35 }36 }37 }38 }39 }40 return dis[n][m];41 }42 int main()43 {44 scanf("%d%d%d",&v,&n,&m);45 for(int i=1;i<=n;i++)46 for(int j=1;j<=m;j++){47 scanf("%d",&map[i][j]);dis[i][j]=Max_double;48 }49 memset(exist,false,sizeof(exist));50 printf("%.2lf\n",SPFA());51 return 0;52 }
注:上面标红色的那个数反正是要开到非常大,我刚开始开了一个15亿左右的数,以为够用了,却总是WA,还找不出错了,造了几组数据也没毛病,后来看了看题解,只是觉得这里稍小了点,其余的感觉差不多。。
思路:很简单,就是我不想翻译英文,看的别人博客里翻译的,才知道了K,之后就是SPFA();
POJ 3037 Skiing
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。