首页 > 代码库 > POJ3687Labeling Balls
POJ3687Labeling Balls
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 14278 | Accepted: 4162 |
Description
Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N in such a way that:
- No two balls share the same label.
- The labeling satisfies several constrains like "The ball labeled with a is lighter than the one labeled with b".
Can you help windy to find a solution?
Input
The first line of input is the number of test case. The first line of each test case contains two integers, N (1 ≤ N ≤ 200) and M (0 ≤ M ≤ 40,000). The next M line each contain two integers a and b indicating the ball labeled with a must be lighter than the one labeled with b. (1 ≤ a, b ≤ N) There is a blank line before each test case.
Output
For each test case output on a single line the balls‘ weights from label 1 to label N. If several solutions exist, you should output the one with the smallest weight for label 1, then with the smallest weight for label 2, then with the smallest weight for label 3 and so on... If no solution exists, output -1 instead.
Sample Input
54 04 11 14 21 22 14 12 14 13 2
Sample Output
1 2 3 4-1-12 1 3 41 3 2 4
题意:
这道题每次输入a,b的时候表示的是编号为a的球比编号为b的球轻,最后输出的是从编号 1
到编号 n每个小球的重量,如果存在多组解,输出使最小重量尽量排在前边的那组解,亦即 所有解中 1到 n号球的重量的字典序最小
/*解题思路: 将输入的n行建立有向图,如果该图产生回路,那么输出-1,如果不产生回路,将入度为0的点放进优先队列中, 优先队列从大到小排序,每个队列按顺序出队,当出队的数与其他点有边存在,就在相应该点的入度减一, 然后在判断是否入度为0,如果为0再次入队。本题一个比较容易出错的就是判重,如果输入两个相同的a和b, 那么如果没有判重将会输出0,判重就在输入边时判断该边是否已经存在,如果存在该边的入度就不在自加。 两组比较好的测试案例: 第二个测试案例有5个,但是有2个一样的,所以按 4 个算2 5 45 14 21 32 3 10 54 18 17 84 12 8 ans:2 4 5 3 1 逆向建图5 1 6 2 7 8 3 4 9 10 没有判重边的话就输出 -1典型的拓扑排序满足不了题目小号排前的要求,可以采用反向拓扑排序,加优先队列完成。*/#include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<queue> using namespace std; int g[210][210];int degree[210];//入度 int value[210];priority_queue<int> q;//定义优先队列 //得到入度为0的点 int toposort(int n) { int j=n; for(int i=1;i<=n;i++) { if(degree[i]==0) { q.push(i); } } if(q.empty()) return 0; while(!q.empty()) { int t = q.top(); q.pop(); value[t]=j; j--; for(int i=1;i<=n;i++) { if(g[i][t]!=0) { g[i][t]=0; degree[i]--; if(degree[i]==0) q.push(i); } } } if(j!=0) return 0; return 1; } int main() { int T; int n,m; int a,b; scanf("%d",&T); while(T--) { memset(g,0,sizeof(g)); memset(degree,0,sizeof(degree)); scanf("%d%d",&n,&m); while(m--) { scanf("%d%d",&a,&b); if(g[a][b]>0) //判重,如果输入一样的那么只算一个 degree[a]--; g[a][b]=1; //a到b的边,起点a,终点b的边 degree[a]++; //反向建图 } int x=toposort(n); if(x==0) printf("-1\n"); else { for(int i=1;i<n;i++) printf("%d ",value[i]); printf("%d\n",value[n]); } } return 0; }
POJ3687Labeling Balls