首页 > 代码库 > 数据结构与算法问题 AVL二叉平衡树
数据结构与算法问题 AVL二叉平衡树
AVL树本质上还是一棵二叉搜索树,它的特点是:
本身首先是一棵二叉搜索树。
带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1
#include <iostream> using namespace std; const int LH = 1; const int EH = 0; const int RH = -1; bool TRUE = 1; bool FALSE = 0; typedef struct BSTNode { int key; int bf; BSTNode *lchild, *rchild; }BSTNode; //中序遍历 void inordertree(BSTNode * &root) { if (root) { inordertree(root->lchild); cout << root->key<<","; inordertree(root->rchild); } } //前序遍历 void preordertree(BSTNode * &root) { if (root) { cout << root->key<<","; preordertree(root->lchild); preordertree(root->rchild); } } //右旋 void R_Rotate(BSTNode * &p) { BSTNode *lc = p->lchild; p->lchild = lc->rchild; lc->rchild = p; p = lc; } //左旋 void L_Rotate(BSTNode *& p) { BSTNode *rc = p->rchild; p->rchild = rc->lchild; rc->lchild = p; p = rc; } void LeftBalance(BSTNode * &T) { BSTNode *lc = T->lchild; switch (lc->bf) { case LH: T->bf = lc->bf = EH; R_Rotate(T); break; case RH: BSTNode *rd = lc->rchild; switch (rd->bf) { case LH: T->bf = RH; lc->bf = EH; break; case EH: T->bf = lc->bf = EH; lc->bf = LH; break; } rd->bf = EH; L_Rotate(T->lchild);//先左旋 R_Rotate(T); break; } } void RightBalance(BSTNode *& T) { BSTNode *rc = T->rchild; switch (rc->bf) { case RH: T->bf = rc->bf = EH; L_Rotate(T); break; case LH: BSTNode *ld = rc->lchild; switch (ld->bf) { case RH: T->bf = LH; rc->bf = EH; break; case EH: T->bf = rc->bf = EH; break; case LH: T->bf = EH; rc->bf = RH; break; } ld->bf = EH; R_Rotate(T->rchild); L_Rotate(T); break; } } int insertAVL(BSTNode *& t, int e, bool &taller) { if (!t) { t = new BSTNode; t->key = e; t->lchild = t->rchild = NULL; t->bf = EH; taller = TRUE; } else { if (e == t->key) { taller = FALSE; return 0; } if (e < t->key) { if (!insertAVL(t->lchild, e,taller)) return 0; if (taller) { switch (t->bf) { case LH: LeftBalance(t); taller = FALSE; break; case EH: t->bf = LH; taller = TRUE; break; case RH: t->bf = EH; taller = FALSE; break; } } } else { if (!insertAVL(t->rchild, e, taller)) return 0; if (taller) { switch (t->bf) { case RH: RightBalance(t); taller = FALSE; break; case EH: t->bf = RH; taller = TRUE; break; case LH: t->bf = EH; taller = FALSE; break; } } } } return 1; } BSTNode *search(BSTNode *t, int key) { BSTNode *p = t; while (p) { if (p->key == key) return p; else if (p->key < key) p = p->rchild; else p = p->lchild; } return p; } int main() { BSTNode *root = NULL; BSTNode *r; bool taller = FALSE; int array[] = { 13, 24, 37, 90, 53 }; for (int i = 0; i < 5; i++) insertAVL(root, array[i], taller); cout << "inorder traverse..." << endl; inordertree(root); cout << endl; cout << "preorder traverse..." << endl; preordertree(root); cout << endl; cout << "search key..." << endl; r = search(root, 37); if (r) { cout << r->key << endl; } else { cout << "not find" << endl; } system("pause"); return 0; }
数据结构与算法问题 AVL二叉平衡树
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。