首页 > 代码库 > [ACM] POJ 3070 Fibonacci (矩阵幂运算)
[ACM] POJ 3070 Fibonacci (矩阵幂运算)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9517 | Accepted: 6767 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
题目中给了提示矩阵。
网赛时才接触矩阵幂运算,自己掌握的知识还是太少了。。。。
代码:
#include <iostream> #include <string.h> #include <stdio.h> #include <algorithm> using namespace std; const int maxn=2; const int mod=10000; int n=2;//矩阵大小 int num;//幂大小 struct mat { int arr[maxn][maxn]; mat() { memset(arr,0,sizeof(arr)); } }; mat mul(mat a,mat b) { mat ans; for(int i=0;i<n;i++) { for(int k=0;k<n;k++) { if(a.arr[i][k]) for(int j=0;j<n;j++) { ans.arr[i][j]+=a.arr[i][k]*b.arr[k][j]; if(ans.arr[i][j]>=mod) ans.arr[i][j]%=mod; } } } return ans; } mat power(mat p,int k) { if(k==1) return p; mat e; for(int i=0;i<n;i++) e.arr[i][i]=1; if(k==0) return e; while(k) { if(k&1) e=mul(e,p); p=mul(p,p); k>>=1; } return e; } int main() { mat ori;//题目中的原始矩阵 ori.arr[0][0]=ori.arr[0][1]=ori.arr[1][0]=1; while(cin>>num&&num!=-1) { mat ans; ans=power(ori,num); cout<<ans.arr[0][1]<<endl; } return 0; }
[ACM] POJ 3070 Fibonacci (矩阵幂运算)