首页 > 代码库 > poj3070--Fibonacci(矩阵的快速幂)

poj3070--Fibonacci(矩阵的快速幂)

Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9650 Accepted: 6856

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

099999999991000000000-1

Sample Output

0346266875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

Stanford Local 2006
和普通的快速幂的写法相同,不同的是需要计算矩阵相乘,只要写对矩阵的乘法,就没难度了
 
#include <cstdio>#include <cstring>#include <algorithm>using namespace std;#define LL long longstruct node{    LL s11 , s12 , s21 , s22 ;};node f(node a,node b){    node p ;    p.s11 = (a.s11*b.s11 + a.s12*b.s21)%10000 ;    p.s12 = (a.s11*b.s12 + a.s12*b.s22)%10000 ;    p.s21 = (a.s21*b.s11 + a.s22*b.s21)%10000 ;    p.s22 = (a.s21*b.s12 + a.s22*b.s22)%10000 ;    return p ;}node pow(node p,int n){    node q ;    q.s11 = q.s22 = 1 ;    q.s12 = q.s21 = 0 ;    if(n == 0)        return q ;    q = pow(p,n/2);    q = f(q,q);    if( n%2 )        q = f(q,p);    return q ;}int main(){    int n ;    node p ;    while(scanf("%d", &n) && n != -1)    {        p.s11 = p.s12 = p.s21 = 1 ;        p.s22 = 0 ;        p = pow(p,n);        printf("%d\n", p.s12);    }    return 0;}

poj3070--Fibonacci(矩阵的快速幂)