首页 > 代码库 > 使用全局内存的光线跟踪实验
使用全局内存的光线跟踪实验
使用全局内存来存储球面对象,项目打包下载
1 /* 2 * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. 3 * 4 * NVIDIA Corporation and its licensors retain all intellectual property and 5 * proprietary rights in and to this software and related documentation. 6 * Any use, reproduction, disclosure, or distribution of this software 7 * and related documentation without an express license agreement from 8 * NVIDIA Corporation is strictly prohibited. 9 * 10 * Please refer to the applicable NVIDIA end user license agreement (EULA) 11 * associated with this source code for terms and conditions that govern 12 * your use of this NVIDIA software. 13 * 14 */ 15 #include <GL\glut.h> 16 #include "cuda.h" 17 #include "cuda_runtime.h" 18 #include "device_launch_parameters.h" 19 #include "../common/book.h" 20 #include "../common/cpu_bitmap.h" 21 #include "device_functions.h" 22 23 #define DIM 1024 24 25 #define rnd( x ) (x * rand() / RAND_MAX) 26 #define INF 2e10f 27 28 struct Sphere { 29 float r, b, g; 30 float radius; 31 float x, y, z; 32 __device__ float hit(float ox, float oy, float *n) { 33 //将中心坐标移动到图像中间,dx和dy就是相对于新的中心坐标ox和oy的新坐标 34 float dx = ox - x; 35 float dy = oy - y; 36 //只处理点在圆内的Sphere对象 37 if (dx*dx + dy*dy < radius*radius) { 38 /* 39 计算的dz为离圆心轴的距离 40 */ 41 float dz = sqrtf(radius*radius - dx*dx - dy*dy); 42 /* 43 和半径相除,由于dz是float类型,所以结果也为float类型 44 也就是说结果为0.xxx这样的数字, 45 n为一个指针,*n为解析指针n,存放的也就是值0.xxx这样的值 46 呈现在最后的结果就是图像颜色的渐变效果 47 */ 48 *n = dz / sqrtf(radius * radius); 49 /* 50 在三维空间中,已经将xoy投影到为图上,z轴垂直于位图 51 距离圆心的距离dz再加上原来的Z轴坐标就是当前坐标对应于xoy面的Z轴方向距离 52 */ 53 return dz + z; 54 } 55 return -INF; 56 } 57 }; 58 #define SPHERES 20 59 60 61 __global__ void kernel(Sphere *s, unsigned char *ptr) { 62 // 映射到图像像素上的位置 63 int x = threadIdx.x + blockIdx.x * blockDim.x; 64 int y = threadIdx.y + blockIdx.y * blockDim.y; 65 int offset = x + y * blockDim.x * gridDim.x;//步长 66 //移动使得Z轴在图像中心 67 float ox = (x - DIM / 2); 68 float oy = (y - DIM / 2); 69 70 float r = 0, g = 0, b = 0; 71 float maxz = -INF; 72 //每个像素递归判断SPHERES个对象在这个像素点上的值 73 for (int i = 0; i<SPHERES; i++) { 74 float n; 75 float t = s[i].hit(ox, oy, &n); 76 if (t > maxz) { 77 //这里取n的地址,hit函数将结果存放在&n地址所指的空间,不同的n对应不同的颜色及深度 78 float fscale = n; 79 r = s[i].r * fscale; 80 g = s[i].g * fscale; 81 b = s[i].b * fscale; 82 maxz = t; 83 } 84 } 85 86 ptr[offset * 4 + 0] = (int)(r * 255); 87 ptr[offset * 4 + 1] = (int)(g * 255); 88 ptr[offset * 4 + 2] = (int)(b * 255); 89 ptr[offset * 4 + 3] = 255; 90 } 91 92 93 // globals needed by the update routine 94 struct DataBlock { 95 unsigned char *dev_bitmap; 96 Sphere *s; 97 }; 98 99 int main(void) {100 DataBlock data;101 //获取时间102 cudaEvent_t start, stop;103 HANDLE_ERROR(cudaEventCreate(&start));104 HANDLE_ERROR(cudaEventCreate(&stop));105 HANDLE_ERROR(cudaEventRecord(start, 0));106 107 CPUBitmap bitmap(DIM, DIM, &data);108 unsigned char *dev_bitmap;109 Sphere *s;110 111 112 // allocate memory on the GPU for the output bitmap113 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,114 bitmap.image_size()));115 //在全局内存中分配s116 HANDLE_ERROR(cudaMalloc((void**)&s,117 sizeof(Sphere)* SPHERES));118 119 //主机上申请存储空间120 Sphere *temp_s = (Sphere*)malloc(sizeof(Sphere)* SPHERES);121 for (int i = 0; i<SPHERES; i++) {122 temp_s[i].r = rnd(1.0f);123 temp_s[i].g = rnd(1.0f);124 temp_s[i].b = rnd(1.0f);125 temp_s[i].x = rnd(1000.0f) - 500;126 temp_s[i].y = rnd(1000.0f) - 500;127 temp_s[i].z = rnd(1000.0f) - 500;128 temp_s[i].radius = rnd(100.0f) + 20;129 }130 HANDLE_ERROR(cudaMemcpy(s, temp_s,131 sizeof(Sphere)* SPHERES,132 cudaMemcpyHostToDevice));133 free(temp_s);134 135 // generate a bitmap from our sphere data136 dim3 grids(DIM / 16, DIM / 16);137 dim3 threads(16, 16);138 kernel <<<grids, threads >>>(s, dev_bitmap);139 140 // copy our bitmap back from the GPU for display141 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,142 bitmap.image_size(),143 cudaMemcpyDeviceToHost));144 145 // get stop time, and display the timing results146 HANDLE_ERROR(cudaEventRecord(stop, 0));147 HANDLE_ERROR(cudaEventSynchronize(stop));148 float elapsedTime;149 HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,150 start, stop));151 printf("Time to generate: %3.1f ms\n", elapsedTime);152 153 HANDLE_ERROR(cudaEventDestroy(start));154 HANDLE_ERROR(cudaEventDestroy(stop));155 156 HANDLE_ERROR(cudaFree(dev_bitmap));157 HANDLE_ERROR(cudaFree(s));158 159 // display160 bitmap.display_and_exit();161 }
结果如下图所示:
使用全局内存的光线跟踪实验
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。