首页 > 代码库 > Bzoj1415 [Noi2005]聪聪和可可

Bzoj1415 [Noi2005]聪聪和可可

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1586  Solved: 929

Description

技术分享

Input

数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。

Output

输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。

Sample Input

【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9

Sample Output

【输出样例1】
1.500
【输出样例2】
2.167

HINT

【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。
技术分享

对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。

Source

 

题目所求的“期望步数”应该理解成期望次数,也就是说一回合走两步算成一步

↑样例也说明了这一点

 

Spfa/BFS预处理出从聪聪一个点到另一个点所走的方向,剩下的就是一个记忆化期望DP了。

方程还算简单。

注意第49行,如果不加nxt[nxt[x][y]][y]==y判断的话,是不能贪心每次走两步的。

(灵魂画师在此)

技术分享

 

 1 /*by SilverN*/ 2 #include<algorithm> 3 #include<iostream> 4 #include<cstring> 5 #include<cstdio> 6 #include<cmath> 7 #include<vector> 8 #include<queue> 9 using namespace std;10 const double eps=1e-7;11 const int mxn=1010;12 int read(){13     int x=0,f=1;char ch=getchar();14     while(ch<0 || ch>9){if(ch==-)f=-1;ch=getchar();}15     while(ch>=0 && ch<=9){x=x*10+ch-0;ch=getchar();}16     return x*f;17 }18 struct edge{19     int v,nxt;20 }e[200010];21 int hd[mxn],mct=0;22 void add_edge(int u,int v){23     e[++mct].v=v;e[mct].nxt=hd[u];hd[u]=mct;return;24 }25 int dis[mxn];26 int nxt[mxn][mxn];27 void BFS(int s){28     memset(dis,0x3f,sizeof dis);29     queue<int>q;30     q.push(s);dis[s]=0;31     nxt[s][s]=s;32     while(!q.empty()){33         int u=q.front(),v;q.pop();34         for(int i=hd[u];i;i=e[i].nxt){35             v=e[i].v;36             if(dis[v]>dis[u]+1 || (dis[v]==dis[u]+1 && u<nxt[v][s])){37                 nxt[v][s]=u;38                 dis[v]=dis[u]+1;39                 q.push(v);40             }41         }42     }43     return;44 }45 int out[mxn];46 double f[mxn][mxn];47 double DFS(int x,int y){48     if(x==y)return f[x][y]=0;49     if(nxt[x][y]==y || nxt[nxt[x][y]][y]==y)return f[x][y]=1;50     if(abs(f[x][y])>eps)return f[x][y];51     double res=0;double f1=0;52     for(int i=hd[y],v;i;i=e[i].nxt){//老鼠可能的去向 53         v=e[i].v;f1+=DFS(nxt[nxt[x][y]][y],v);54     }55     f1+=DFS(nxt[nxt[x][y]][y],y);//老鼠不动 56     res=f1/(out[y]+1)+1;57     return f[x][y]=res;58 }59 int n,E,C,M;60 int main(){61 //    freopen("in.txt","r",stdin);62     int i,j,u,v;63     n=read();E=read();64     C=read();M=read();65     for(i=1;i<=E;i++){66         u=read();v=read();67         add_edge(u,v);68         add_edge(v,u);69         out[u]++;out[v]++;70     }71     for(i=1;i<=n;i++)BFS(i);72     DFS(C,M);73     printf("%.3f\n",f[C][M]);74     return 0;75 }

 

Bzoj1415 [Noi2005]聪聪和可可