首页 > 代码库 > hdu2204Eddy's爱好

hdu2204Eddy's爱好

大概题意是要你输出1到n中,能够表示成a^b的数,a,b都是大于0的整数的个数,
其中b大于1。
因为1到n中,能够完全开平方的个数就是(n^0.5)的整数部分,
以此类推可以得到,完全开立方,完全开四次方各种的次数。
这样的话,要枚举的数量太大,有什么办法可以让枚举的数量减少呢?
有的,由于任意一个大于1的整数都可以表示成两个素数的乘积,
于是,能够完全开平方的个数包括了能够完全开四次方,
八次方,十六次方以此类推的个数。
于是,可以知道,只需要枚举能够完全开素数次方的个数即可。
又因为n最大不会超过10^18,由于64位整型号能够表示的最大数
大概就是9*10^18多,所以不需要特地写个大数。
又因为这样,所以素数只需要枚举到大小不超过63即可,因为
2^63-1就是64位整型的最大值,所以这个n最大,开个63次方的整数部分
结果肯定为1,为1的话就代表能够1到n中能够完全开这个次方
的数只有1个,又因为1能够开任意次方,所以,这个数肯定是1啦,
于是超过63的素数没必要枚举了,因为只有1能够开这么多次方。

对于一个数n,从小到大枚举到使n开次方为1即可,再把前面
所有开次方的结果都累加,再除去之中重复的部分,最终结果就是
题意所要求的个数。

重复的部分是说,能够完全开六次方的肯定也能够完全开二次方和三次方,
这个能完全开六次方的个数被重复加了一次,所以要减去一次,
以此类推把所有重复的部分除去即可。

还有一点,这个题目,有的人用long long读入n的时候,会wa,
这个的话,是各种编译器的原因,用cin读入就好了,
至于有的人说缺失精度什么的,只是想多了。

我的代码如下:

#include<iostream>
#include<cmath>
using namespace std;
int prime[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61};
void result(long long x)
{
	int i,j,k;
	long long tmp,ans=1;
	for(i=0;;i++)
	{
		tmp=(long long)(pow(x,1.0/prime[i]));
		if(tmp<2)
			break;
		ans+=tmp-1;
		for(j=i+1;;j++)
		{
			tmp=(long long)(pow(x,1.0/(prime[i]*prime[j])));
			if(tmp<2)
				break;
			ans-=tmp-1;
			for(k=j+1;;k++)
			{
				tmp=(long long)(pow(x,1.0/(prime[i]*prime[j]*prime[k])));
				if(tmp<2)
					break;
				ans+=tmp-1;
			}
		}
	}
	printf("%lld\n",ans);
}
int main()
{
	long long x;
	while(cin>>x)
		result(x);
}