首页 > 代码库 > HDU 1848 SG函数博弈

HDU 1848 SG函数博弈

Fibonacci again and again

 

Problem Description
 
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
 

 

Input
 
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
 

 

Output
 
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
 

 

Sample Input
 
1 1 11 4 10 0 0
 

 

Sample Output
 
FiboNacci
 

题解:

  吧斐波那契数组处理出来

  就是这题了:这题

#include <iostream>#include <cstdio>#include <cmath>#include <cstring>#include <algorithm>using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")#define ls i<<1#define rs ls | 1#define mid ((ll+rr)>>1)#define pii pair<int,int>#define MP make_pairtypedef long long LL;const long long INF = 1e18+1LL;const double Pi = acos(-1.0);const int N = 5e5+10, M = 2e5+20, mod = 1e9+7, inf = 2e9;int f[N],n,m,p,sg[N],vis[N];int main() {        f[1] = 1; f[2] = 2;        int cnt = 2;        for(int i = 3; ; ++i,++cnt) {            f[i] = f[i-1] + f[i-2];            if(f[i] > 1000) break;        }        sg[0] = 0;        for(int i = 1; i <= 1000; ++i) {            for(int j = 1; j <= cnt; ++j) {                if(f[j] > i) break;                vis[sg[i - f[j]]] = 1;            }            for(int j = 0; j <= 100; ++j) if(!vis[j]){ sg[i] = j;break;}             for(int j = 1; j <= cnt; ++j) {                if(f[j] > i) break;                vis[sg[i - f[j]]] = 0;            }        }        while(scanf("%d%d%d",&n,&m,&p) && n &&m && p) {                if(sg[n] ^ sg[m] ^ sg[p]) {                    puts("Fibo");                }else puts("Nacci");        }        return 0;}

 

HDU 1848 SG函数博弈