首页 > 代码库 > POJ2533:Longest Ordered Subsequence
POJ2533:Longest Ordered Subsequence
Longest Ordered Subsequence
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 31680 | Accepted: 13848 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
这是一道动归题。
n=3
1 | 7 | 3 | 5 | 9 | 4 | 8 |
dp[]=0;
1 | ap[1]=0 |
7 | dp[2]=1 |
3 | dp[3]=1 |
5 | d[4]=2 |
9 | d[5]=3 |
4 | d[6]=2 |
8 | d[7]=3 |
最后找出最大值然后加一;
具体实现如下:
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> using namespace std; const int M = 1000+5; int sequence[M]; //输入的数据 int dp[M]; int main() { int n; while(scanf("%d", &n)!=EOF) { for(int i=1; i<=n; i++) scanf("%d", &sequence[i]); memset(dp, 0, sizeof(dp)); //初始化为0 for(int i=1; i<=n; i++) for(int j=1; j<i; j++) { if(sequence[i]>sequence[j]) dp[i] = max(dp[i], dp[j] + 1); //动归方程 } int ans=0; for(int i=1; i<=n; i++) ans = max(ans, dp[i]); printf("%d\n", ans+1); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。