首页 > 代码库 > POJ 2533 Longest Ordered Subsequence DP
POJ 2533 Longest Ordered Subsequence DP
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 32192 | Accepted: 14093 |
Description
A numeric sequence of ai is ordered if
a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1,
a2, ..., aN) be any sequence (ai1,
ai2, ..., aiK), where 1 <=
i1 < i2 < ... < iK <=
N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
#include<iostream> #include<cstring> using namespace std; int main() { int n; while(cin>>n) { int a[1005],b[1005]; memset(b,0,sizeof(b)); int i,j; for(i=0;i<n;i++) cin>>a[i]; for(i=0;i<n;i++) { b[i]=1; for(j=0;j<i;j++) if(a[j]<a[i]&&b[i]<b[j]+1) b[i]++; } int max=0; for(i=0;i<n;i++) if(max<b[i]) max=b[i]; cout<<max<<endl; } return 0; }
POJ 2533 Longest Ordered Subsequence DP
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。