首页 > 代码库 > POJ 2533-Longest Ordered Subsequence(DP)
POJ 2533-Longest Ordered Subsequence(DP)
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 34454 | Accepted: 15135 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
最长上升子序列。。orz 傻逼居然直接把dp[n]输出了 后来wa了一时还没反应过来。。
dp[i]代表以i为结尾的最长上升子序列的长度,but dp[n]不一定最长。。其实整个dp数组就是无序的了。。可以sort后输出
O(n*n)渣比写法
#include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #include <vector> #include <cstdio> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #define ll long long #define maxn 1010 #define pp pair<int,int> #define INF 0x3f3f3f3f #define max(x,y) ( ((x) > (y)) ? (x) : (y) ) #define min(x,y) ( ((x) > (y)) ? (y) : (x) ) using namespace std; int n,dp[maxn],a[maxn]; void solve() { for(int i=2;i<=n;i++) for(int j=1;j<i;j++) if(a[i]>a[j]&&dp[i]<=dp[j]) dp[i]=dp[j]+1; sort(dp+1,dp+n+1); printf("%d\n",dp[n]); } int main() { while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) { dp[i]=1; scanf("%d",&a[i]); } solve(); } return 0; }
POJ 2533-Longest Ordered Subsequence(DP)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。