首页 > 代码库 > POJ 2533 Longest Ordered Subsequence DP

POJ 2533 Longest Ordered Subsequence DP

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 32192 Accepted: 14093

Description

A numeric sequence of ai is ordered ifa1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1,a2, ..., aN) be any sequence (ai1,ai2, ..., aiK), where 1 <=i1 < i2 < ... < iK <=N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4



#include<iostream>
#include<cstring>
using namespace std;


int main()
{
	int n;
	while(cin>>n)
	{
		int a[1005],b[1005];
		memset(b,0,sizeof(b));
		int i,j;
		for(i=0;i<n;i++)
			cin>>a[i];
		for(i=0;i<n;i++)
		{
			b[i]=1;
			for(j=0;j<i;j++)
				if(a[j]<a[i]&&b[i]<b[j]+1)
					b[i]++;
		}
		int max=0;
		for(i=0;i<n;i++)
			if(max<b[i])    max=b[i];
		cout<<max<<endl;
	}
	return 0;
}


POJ 2533 Longest Ordered Subsequence DP