首页 > 代码库 > 树四:遍历二叉树
树四:遍历二叉树
二叉树遍历:
从根结点开始,按照某种次序依次访问二叉树中的所有结点。
前序遍历:
中序遍历:
后序遍历:
层次遍历:
代码实现:
/* main.c */#include <stdio.h>#include <stdlib.h>#include "BTree.h"#include "LinkQueue.h"/* run this program using the console pauser or add your own getch, system("pause") or input loop */struct Node{ BTreeNode header; char v;};void printf_data(BTreeNode* node){ if( node != NULL ) { printf("%c", ((struct Node*)node)->v); }}void pre_order_traversal(BTreeNode* root){ if( root != NULL ) { printf("%c, ", ((struct Node*)root)->v); pre_order_traversal(root->left); pre_order_traversal(root->right); }}void middle_order_traversal(BTreeNode* root){ if( root != NULL ) { middle_order_traversal(root->left); printf("%c, ", ((struct Node*)root)->v); middle_order_traversal(root->right); }}void post_order_traversal(BTreeNode* root){ if( root != NULL ) { post_order_traversal(root->left); post_order_traversal(root->right); printf("%c, ", ((struct Node*)root)->v); }}void level_order_traversal(BTreeNode* root){ if( root != NULL ) { LinkQueue* queue = LinkQueue_Create(); if( queue != NULL ) { LinkQueue_Append(queue, root); while( LinkQueue_Length(queue) > 0 ) { struct Node* node = (struct Node*)LinkQueue_Retrieve(queue); printf("%c, ", node->v); LinkQueue_Append(queue, node->header.left); LinkQueue_Append(queue, node->header.right); } } LinkQueue_Destroy(queue); }}int main(int argc, char *argv[]){ BTree* tree = BTree_Create(); struct Node n1 = {{NULL, NULL}, ‘A‘}; struct Node n2 = {{NULL, NULL}, ‘B‘}; struct Node n3 = {{NULL, NULL}, ‘C‘}; struct Node n4 = {{NULL, NULL}, ‘D‘}; struct Node n5 = {{NULL, NULL}, ‘E‘}; struct Node n6 = {{NULL, NULL}, ‘F‘}; BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0); BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0); BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0); BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0); BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0); BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0); printf("Full Tree: \n"); BTree_Display(tree, printf_data, 4, ‘-‘); printf("Pre Order Traversal:\n"); pre_order_traversal(BTree_Root(tree)); printf("\n"); printf("Middle Order Traversal:\n"); middle_order_traversal(BTree_Root(tree)); printf("\n"); printf("Post Order Traversal:\n"); post_order_traversal(BTree_Root(tree)); printf("\n"); printf("Level Order Traversal:\n"); level_order_traversal(BTree_Root(tree)); printf("\n"); BTree_Destroy(tree); return 0;}
/* LinkQueue.h */#ifndef _LINKQUEUE_H_#define _LINKQUEUE_H_typedef void LinkQueue;LinkQueue* LinkQueue_Create();void LinkQueue_Destroy(LinkQueue* queue);void LinkQueue_Clear(LinkQueue* queue);int LinkQueue_Append(LinkQueue* queue, void* item);void* LinkQueue_Retrieve(LinkQueue* queue);void* LinkQueue_Header(LinkQueue* queue);int LinkQueue_Length(LinkQueue* queue);#endif
/*LinkQueue.c */#include <malloc.h>#include <stdio.h>#include "LinkQueue.h"typedef struct _tag_LinkQueueNode TLinkQueueNode;struct _tag_LinkQueueNode{ TLinkQueueNode* next; void* item;};typedef struct _tag_LinkQueue{ TLinkQueueNode* front; TLinkQueueNode* rear; int length;} TLinkQueue;LinkQueue* LinkQueue_Create() // O(1){ TLinkQueue* ret = (TLinkQueue*)malloc(sizeof(TLinkQueue)); if( ret != NULL ) { ret->front = NULL; ret->rear = NULL; ret->length = 0; } return ret;}void LinkQueue_Destroy(LinkQueue* queue) // O(n){ LinkQueue_Clear(queue); free(queue);}void LinkQueue_Clear(LinkQueue* queue) // O(n){ while( LinkQueue_Length(queue) > 0 ) { LinkQueue_Retrieve(queue); }}int LinkQueue_Append(LinkQueue* queue, void* item) // O(1){ TLinkQueue* sQueue = (TLinkQueue*)queue; TLinkQueueNode* node = (TLinkQueueNode*)malloc(sizeof(TLinkQueueNode)); int ret = (sQueue != NULL ) && (item != NULL) && (node != NULL); if( ret ) { node->item = item; if( sQueue->length > 0 ) { sQueue->rear->next = node; sQueue->rear = node; node->next = NULL; } else { sQueue->front = node; sQueue->rear = node; node->next = NULL; } sQueue->length++; } if( !ret ) { free(node); } return ret;}void* LinkQueue_Retrieve(LinkQueue* queue) // O(1){ TLinkQueue* sQueue = (TLinkQueue*)queue; TLinkQueueNode* node = NULL; void* ret = NULL; if( (sQueue != NULL) && (sQueue->length > 0) ) { node = sQueue->front; sQueue->front = node->next; ret = node->item; free(node); sQueue->length--; if( sQueue->length == 0 ) { sQueue->front = NULL; sQueue->rear = NULL; } } return ret;}void* LinkQueue_Header(LinkQueue* queue) // O(1){ TLinkQueue* sQueue = (TLinkQueue*)queue; void* ret = NULL; if( (sQueue != NULL) && (sQueue->length > 0) ) { ret = sQueue->front->item; } return ret;}int LinkQueue_Length(LinkQueue* queue) // O(1){ TLinkQueue* sQueue = (TLinkQueue*)queue; int ret = -1; if( sQueue != NULL ) { ret = sQueue->length; } return ret;}
/* BTree.h */#ifndef _BTREE_H_#define _BTREE_H_#define BT_LEFT 0#define BT_RIGHT 1typedef void BTree;typedef unsigned long long BTPos;typedef struct _tag_BTreeNode BTreeNode;struct _tag_BTreeNode{ BTreeNode* left; BTreeNode* right;};typedef void (BTree_Printf)(BTreeNode*);BTree* BTree_Create();void BTree_Destroy(BTree* tree);void BTree_Clear(BTree* tree);int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);BTreeNode* BTree_Root(BTree* tree);int BTree_Height(BTree* tree);int BTree_Count(BTree* tree);int BTree_Degree(BTree* tree);void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);#endif
/* BTree.c */#include <stdio.h>#include <malloc.h>#include "BTree.h"typedef struct _tag_BTree TBTree;struct _tag_BTree{ int count; BTreeNode* root;};static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div) // O(n){ int i = 0; if( (node != NULL) && (pFunc != NULL) ) { for(i=0; i<format; i++) { printf("%c", div); } pFunc(node); printf("\n"); if( (node->left != NULL) || (node->right != NULL) ) { recursive_display(node->left, pFunc, format + gap, gap, div); recursive_display(node->right, pFunc, format + gap, gap, div); } } else { for(i=0; i<format; i++) { printf("%c", div); } printf("\n"); }}static int recursive_count(BTreeNode* root) // O(n){ int ret = 0; if( root != NULL ) { ret = recursive_count(root->left) + 1 + recursive_count(root->right); } return ret;}static int recursive_height(BTreeNode* root) // O(n){ int ret = 0; if( root != NULL ) { int lh = recursive_height(root->left); int rh = recursive_height(root->right); ret = ((lh > rh) ? lh : rh) + 1; } return ret;}static int recursive_degree(BTreeNode* root) // O(n){ int ret = 0; if( root != NULL ) { if( root->left != NULL ) { ret++; } if( root->right != NULL ) { ret++; } if( ret == 1 ) { int ld = recursive_degree(root->left); int rd = recursive_degree(root->right); if( ret < ld ) { ret = ld; } if( ret < rd ) { ret = rd; } } } return ret;}BTree* BTree_Create() // O(1){ TBTree* ret = (TBTree*)malloc(sizeof(TBTree)); if( ret != NULL ) { ret->count = 0; ret->root = NULL; } return ret;}void BTree_Destroy(BTree* tree) // O(1){ free(tree);}void BTree_Clear(BTree* tree) // O(1){ TBTree* btree = (TBTree*)tree; if( btree != NULL ) { btree->count = 0; btree->root = NULL; }}int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag) // O(n) { TBTree* btree = (TBTree*)tree; int ret = (btree != NULL) && (node != NULL) && ((flag == BT_LEFT) || (flag == BT_RIGHT)); int bit = 0; if( ret ) { BTreeNode* parent = NULL; BTreeNode* current = btree->root; node->left = NULL; node->right = NULL; while( (count > 0) && (current != NULL) ) { bit = pos & 1; pos = pos >> 1; parent = current; if( bit == BT_LEFT ) { current = current->left; } else if( bit == BT_RIGHT ) { current = current->right; } count--; } if( flag == BT_LEFT ) { node->left = current; } else if( flag == BT_RIGHT ) { node->right = current; } if( parent != NULL ) { if( bit == BT_LEFT ) { parent->left = node; } else if( bit == BT_RIGHT ) { parent->right = node; } } else { btree->root = node; } btree->count++; } return ret;}BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count) // O(n){ TBTree* btree = (TBTree*)tree; BTreeNode* ret = NULL; int bit = 0; if( btree != NULL ) { BTreeNode* parent = NULL; BTreeNode* current = btree->root; while( (count > 0) && (current != NULL) ) { bit = pos & 1; pos = pos >> 1; parent = current; if( bit == BT_LEFT ) { current = current->left; } else if( bit == BT_RIGHT ) { current = current->right; } count--; } if( parent != NULL ) { if( bit == BT_LEFT ) { parent->left = NULL; } else if( bit == BT_RIGHT ) { parent->right = NULL; } } else { btree->root = NULL; } ret = current; btree->count = btree->count - recursive_count(ret); } return ret;}BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count) // O(n){ TBTree* btree = (TBTree*)tree; BTreeNode* ret = NULL; int bit = 0; if( btree != NULL ) { BTreeNode* current = btree->root; while( (count > 0) && (current != NULL) ) { bit = pos & 1; pos = pos >> 1; if( bit == BT_LEFT ) { current = current->left; } else if( bit == BT_RIGHT ) { current = current->right; } count--; } ret = current; } return ret;}BTreeNode* BTree_Root(BTree* tree) // O(1){ TBTree* btree = (TBTree*)tree; BTreeNode* ret = NULL; if( btree != NULL ) { ret = btree->root; } return ret;}int BTree_Height(BTree* tree) // O(n){ TBTree* btree = (TBTree*)tree; int ret = 0; if( btree != NULL ) { ret = recursive_height(btree->root); } return ret;}int BTree_Count(BTree* tree) // O(1){ TBTree* btree = (TBTree*)tree; int ret = 0; if( btree != NULL ) { ret = btree->count; } return ret;}int BTree_Degree(BTree* tree) // O(n){ TBTree* btree = (TBTree*)tree; int ret = 0; if( btree != NULL ) { ret = recursive_degree(btree->root); } return ret;}void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div) // O(n){ TBTree* btree = (TBTree*)tree; if( btree != NULL ) { recursive_display(btree->root, pFunc, 0, gap, div); }}
树四:遍历二叉树
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。