首页 > 代码库 > Combination Sum II

Combination Sum II

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations inC where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … ,ak) must be in non-descending order. (ie, a1a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6] 

答案

public class Solution {
    int[] candidates;
    public List<List<Integer>> combinationSum(int index ,int target)
    {
        List<List<Integer>> result=new LinkedList<List<Integer>>();
        if(index>=candidates.length||candidates[index]>target)
        {
            return result;
        }
        List<Integer> p=new LinkedList<Integer>();
        int end;
        for(end=index;end<candidates.length;end++)
        {
            if(candidates[end]!=candidates[index])
            {
                break;
            }
        }
        int times=end-index;
        for(int time=0;time<=times;time++)
        {
            if(target==0)
            {
                result.add(p);
                break;
            }
            List<List<Integer>> next=combinationSum(end,target);
            if(next.size()>0)
            {
                for(List<Integer> list:next)
                {
                    List<Integer> pList=new LinkedList<Integer>();
                    pList.addAll(p);
                    pList.addAll(list);
                    result.add(pList);
                }
            }
            p.add(candidates[index]);
            target-=candidates[index];
        }
        return result;
    }
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        List<List<Integer>> result=new LinkedList<List<Integer>>();
        if(candidates==null||target<=0)
        {
            return result;
        }
        Arrays.sort(candidates);
        this.candidates=candidates;
        return combinationSum(0,target);
    }
}


ArrayBacktracking

Combination Sum II