首页 > 代码库 > BZOJ 4804: 欧拉心算

BZOJ 4804: 欧拉心算

Description

求\(\sum_{i=1}^n\sum_{i=1}^n\varphi(gcd(i,j)),T\leqslant 5\times 10^3,n\leqslant 10^7\)

Solution

数论分块+莫比乌斯反演.

化式子

\(\sum_{i=1}^n\sum_{i=1}^n\varphi(gcd(i,j))\)
\(=\sum_d\varphi(d)\sum_{i=1}^n\sum_{j=1}^n[(i,j)=d]\)
\(=\sum_d\varphi(d)(\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{d}\rfloor}[(i,j)=1])\)
\(=\sum_d\varphi(d)(\sum_{p}\mu(p)\sum_{i=1}^{\lfloor \frac{n}{pd}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{pd}\rfloor})\)
\(\text{Let T=pd}\)
\(=\sum_{T}\lfloor \frac{n}{T}\rfloor\lfloor \frac{n}{T}\rfloor\sum_{p}\mu(p)\varphi(\frac{T}{p})\)

因为积性函数的狄利克雷前缀和也是积性函数,并且因为\(\mu\)的存在这个式子还是很好筛的.

Code

/**************************************************************    Problem: 4804    User: BeiYu    Language: C++    Result: Accepted    Time:4272 ms    Memory:128240 kb****************************************************************/ #include <bits/stdc++.h>using namespace std; typedef long long LL;const int N = 10000050; int pr[N],cp;bool b[N];LL f[N]; void pre() {    f[1]=1;    for(int i=2;i<N;i++) {        if(!b[i]) pr[++cp]=i,f[i]=i-2;        for(int j=1;j<=cp && (LL)i*pr[j]<N;j++) {            b[i*pr[j]]=1;            if(i%pr[j]) f[i*pr[j]]=f[i]*f[pr[j]];            else {                if(i/pr[j]%pr[j]) f[i*pr[j]]=f[i/pr[j]]*(pr[j]-1)*(pr[j]-1);                else f[i*pr[j]]=f[i]*pr[j];                break;            }        }    }for(int i=2;i<N;i++) f[i]+=f[i-1];}int T,n;int main() {    pre();    for(scanf("%d",&T);T--;) {        scanf("%d",&n);        LL ans=0;        for(int i=1,j;i<=n;i=j+1) {            j=n/(n/i);            ans+=1LL*(n/i)*(n/i)*(f[j]-f[i-1]);        }printf("%lld\n",ans);    }    return 0;}

  

BZOJ 4804: 欧拉心算