首页 > 代码库 > LA 5031

LA 5031

 Graph and Queries

Time limit: 3.000 second

You are given an undirected graph with N vertexes and M edges. Every vertex in this graph has an integer value assigned to it at the beginning. You‘re also given a sequence of operations and you need to process them as requested. Here‘s a list of the possible operations that you might encounter:

 

 

  1. Deletes an edge from the graph.

    The format is [D X], where X is an integer from 1 to M, indicating the ID of the edge that you should delete. It is guaranteed that no edge will be deleted more than once.

  2. Queries the weight of the vertex with K-th maximum value among all vertexes currently connected with vertex X (including X itself).

    The format is [Q X K], where X is an integer from 1 to N, indicating the id of the vertex, and you may assume that K will always fit into a 32-bit signed integer. In case K is illegal, the value for that query will be considered as undefined, and you should return 0 as the answer to that query.

  3. Changes the weight of a vertex.

    The format is [C X V], where X is an integer from 1 to N, and V is an integer within the range [ -106, 106].

The operations end with one single character, E, which indicates that the current case has ended. For simplicity, you only need to output one real number - the average answer of all queries.

 

Input 

There are multiple test cases in the input file. Each case starts with two integers N and M (1$ \le$N$ \le$* 104, 0$ \le$M$ \le$* 104), the number of vertexes in the graph. The next N lines describes the initial weight of each vertex (- 106$ \le$[weight][i]$ \le$106). The next part of each test case describes the edges in the graph at the beginning. Vertexes are numbered from 1 to N. The last part of each test case describes the operations to be performed on the graph. It is guaranteed that the number of query operations [Q X K] in each case will be in the range [ 1, 2 * 105], and there will be no more than * 105 operations that change the values of the vertexes [C X V].

There will be a blank line between two successive cases. A case with N = 0, M = 0 indicates the end of the input file and this case should not be processed by your program.

 

Output 

For each test case, output one real number - the average answer of all queries, in the format as indicated in the sample output. Please note that the result is rounded to six decimal places.

 

 


Explanation for samples:

For the first sample:

D 3 - deletes the 3rd edge in the graph (the remaining edges are (1, 2) and (2, 3))

Q 1 2 - finds the vertex with the second largest value among all vertexes connected with 1. The answer is 20.

Q 2 1 - finds the vertex with the largest value among all vertexes connected with 2. The answer is 30.

D 2 - deletes the 2nd edge in the graph (the only edge left after this operation is (1, 2))

Q 3 2 - finds the vertex with the second largest value among all vertexes connected with 3. The answer is 0 (Undefined).

C 1 50 - changes the value of vertex 1 to 50.

Q 1 1 - finds the vertex with the largest value among all vertex connected with 1. The answer is 50.

E - This is the end of the current test case. Four queries have been evaluated, and the answer to this case is (20 + 30 + 0 + 50) / 4 = 25.000.

 


For the second sample, caution about the vertex with same weight:

Q 1 1 - the answer is 20

Q 1 2 - the answer is 20

Q 1 3 - the answer is 10

 

Sample Input 

 

3 3 10 20 30 1 2 2 3 1 3 D 3 Q 1 2 Q 2 1 D 2 Q 3 2 C 1 50Q 1 1E3 3 10 20 20 1 2 2 3 1 3 Q 1 1 Q 1 2 Q 1 3 E 0 0

 

Sample Output 

 

Case 1: 25.000000 Case 2: 16.666667

有关数据结构有Treap树,并查集,同时离线算法的设计。

/** @author  Panoss*/#include<iostream>#include<cstdio>#include<cstring>#include<string>#include<algorithm>#include<vector>#include<ctime>#include<stack>#include<queue>#include<list>using namespace std;#define DBG 0#define fori(i,a,b) for(int i = (a); i < (b); i++)#define forie(i,a,b) for(int i = (a); i <= (b); i++)#define ford(i,a,b) for(int i = (a); i > (b); i--)#define forde(i,a,b) for(int i = (a); i >= (b); i--)#define forls(i,a,b,n) for(int i = (a); i != (b); i = n[i])#define mset(a,v) memset(a, v, sizeof(a))#define mcpy(a,b) memcpy(a, b, sizeof(a))#define dout  DBG && cerr << __LINE__ << " >>| "#define checkv(x) dout << #x"=" << (x) << " | "<<endl#define checka(array,a,b) if(DBG) { \    dout << #array"[] | " << endl;     forie(i, a, b) cerr << "[" << i << "]=" << array[i] << " |" << ((i - (a)+1) % 5 ? " " : "\n"); if (((b)-(a)+1) % 5) cerr << endl; }#define redata(T, x) T x; cin >> x#define MIN_LD -2147483648#define MAX_LD  2147483647#define MIN_LLD -9223372036854775808#define MAX_LLD  9223372036854775807#define MAX_INF 18446744073709551615inline int  reint() { int d; scanf("%d", &d); return d; }inline long relong() { long l; scanf("%ld", &l); return l; }inline char rechar() { scanf(" "); return getchar(); }inline double redouble() { double d; scanf("%lf", &d); return d; }inline string restring() { string s; cin >> s; return s; }struct Treap_node{    int value, priority, s;         ///键值,优先级,总结点数(从根(包括根)开始往下算的结点个数)    struct Treap_node * child[2];    Treap_node(int v): value(v)    {        child[0] =  child[1] = NULL;        priority = rand();        s = 1;    }    bool operator < (const Treap_node & X) const    {        return priority < X.priority;    }    int compare(int v)    {        if(v == value) return -1;        return v < value ? 0 : 1;    }    void updata()    {        s = 1;        if(child[0]) s += child[0]->s;        if(child[1]) s += child[1]->s;    }};void Rotate(Treap_node* &root, int d)  ///0左旋(逆时针),1右旋(顺时针){    Treap_node * k = root->child[d^1];    root->child[d^1] = k->child[d];    k->child[d] = root;    root->updata();    k->updata();    root = k;}void Insert_node(Treap_node* &root, int v){    if(!root)    {        root = new Treap_node(v);    }    else    {        int d = (v < root->value ? 0 : 1);     ///若允许有相同结点        ///int d = root->compare(v);           ///若不允许有相同结点        Insert_node(root->child[d], v);        if(root->child[d] > root) Rotate(root, d^1);    }    root->updata();}void Remove_node(Treap_node * &root, int v){    int d = root->compare(v);    if(d == -1)    {        Treap_node * temp = root;        if(root->child[0] && root->child[1])        {            int dir = root->child[0] > root->child[1] ? 1:0;            Rotate(root, dir);            Remove_node(root->child[dir], v);        }        else        {            if(!root->child[0]) root = root->child[1];            else root = root->child[0];            delete temp;        }    }    else    {        Remove_node(root->child[d], v);    }    if(root) root->updata();}bool Find_node(Treap_node * root, int v){    while(root)    {        int d = root->compare(v);        if(d ==  -1) return true;        else root = root->child[d];    }    return false;}const int MAXN = 20000 + 10;const int MAXM = 60000 + 10;const int MAXC = 400000 + 10;struct Command{    char op;    int x, p; ///p = k or v};Command cmd[MAXC];int f[MAXN];int Find(int x) {return f[x] == x? x : f[x] = Find(f[x]);}int from[MAXM], to[MAXM], weight[MAXN];bool removed[MAXM];Treap_node * Tree[MAXN];int K_th(Treap_node * root, int k){    if(!root || k <= 0 || k > root->s) return 0;    int s = (root->child[1]==NULL?0:root->child[1]->s);    if(k == s+1) return root->value;    else if(k <= s) return K_th(root->child[1],k);    else return  K_th(root->child[0],k-s-1);}void Merge_Tree(Treap_node* &from_root, Treap_node * &to_root){    if(from_root->child[0]) Merge_Tree(from_root->child[0],to_root);    if(from_root->child[1]) Merge_Tree(from_root->child[1],to_root);    Insert_node(to_root,from_root->value);    delete from_root;    from_root = NULL;}void Remove_Tree(Treap_node * &root){    if(root->child[0]) Remove_Tree(root->child[0]);    if(root->child[1]) Remove_Tree(root->child[1]);    delete root;    root = NULL;}void Add_Edge(int e){    int u = Find(from[e]), v = Find(to[e]);    if(u!=v)    {        if(Tree[u]->s < Tree[v]->s)        {            f[u] = v;            Merge_Tree(Tree[u],Tree[v]);        }        else        {            f[v] = u;            Merge_Tree(Tree[v],Tree[u]);        }    }}int query_cnt;long long query_tot;void Query(int x, int k){    query_cnt ++;    query_tot += K_th(Tree[Find(x)], k);}void Change_weight(int x, int v){    int u = Find(x);    Remove_node(Tree[u], weight[x]);    Insert_node(Tree[u], v);    weight[x] = v;///}int main(){    int Case = 0;    int n,m;    while(scanf("%d%d",&n,&m)==2&&(n+m))    {        Case ++;        forie(i,1,n) scanf("%d",&weight[i]);        forie(i,1,m) scanf("%d%d",&from[i],&to[i]);        ///Init        mset(removed,false);        forie(i,1,n) f[i] = i;        query_cnt = query_tot = 0;        int c = 0;        for(;;)        {            char op;            int x , p = 0, v = 0;            scanf(" %c",&op);            if(op == E) break;            scanf("%d",&x);            if(op == D) removed[x] = true;            if(op == Q) scanf("%d",&p);            if(op == C)            {                scanf("%d",&v);                p = weight[x];                weight[x] = v;            }            cmd[++c] = (Command){op,x,p};        }        forie(i,1,n)        {            if(Tree[i]) Remove_Tree(Tree[i]);            Tree[i] = new Treap_node(weight[i]);        }        forie(i,1,m)            if(!removed[i]) Add_Edge(i);        forde(i,c,1)        {            if(cmd[i].op == D) Add_Edge(cmd[i].x);            if(cmd[i].op == Q) Query(cmd[i].x,cmd[i].p);            if(cmd[i].op == C) Change_weight(cmd[i].x,cmd[i].p);        }        printf("Case %d: %.6lf\n",Case,query_tot/(double)query_cnt);    }    return 0;}