首页 > 代码库 > DP [HDU 2709] Sumsets
DP [HDU 2709] Sumsets
Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1586 Accepted Submission(s): 609
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
弱啊弱啊、弱啊弱
/* 借鉴整数的划分的思想,将j-1变为j/2、可是显然暴搜超时,记忆话二维超内存 *//* #include <iostream>#include <algorithm>#include <cstring>using namespace std;int low(int n){ int k=1; while(k*2<=n) k<<=1; return k;}int q(int i,int j){ if(i==1 || j==1) return 1; if(i<j) return q(i,low(i)); return q(i,j/2)+q(i-j,j);}int main(){ int n; while(scanf("%d",&n)!=EOF) { cout<<q(n,low(n))<<endl; } return 0;}*//* 于是看讨论 */// 如果所求的n为奇数,那么所求的分解结果中必含有1,因此,直接将n-1的分拆结果中添加一个1即可 为s[n-1]// 如果所求的n为偶数,那么n的分解结果分两种情况// 1.含有1 这种情况可以直接在n-1的分解结果中添加一个1即可 s[n-1]// 2.不含有1,那么分解因子的都是偶数,将每个分解的因子都除以2,刚好是n/2的分解结果,并且可以与之一一对应,这种情况有 s[n/2]// 所以,状态转移方程为// 如果i为奇数, s[i] = s[i-1]// 如果i为偶数,s[i] = s[i-1] + s[i/2]#include <stdio.h>#define N 1000000#define MOD 1000000000int n,s[N+2];int main(){ s[1]=1; s[2]=2; int i=3; while(i<=N) { s[i++]=s[i-1]; s[i++]=(s[i-2]+s[i>>1])%MOD; } while(scanf("%d",&n)!=EOF) printf("%d\n",s[n]); return 0;}
DP [HDU 2709] Sumsets
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。