首页 > 代码库 > poj 2220 Sumsets

poj 2220 Sumsets

                                                                                                 Sumsets
Time Limit: 2000MS Memory Limit: 200000K
Total Submissions: 16876 Accepted: 6678

Description

Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 

1) 1+1+1+1+1+1+1 
2) 1+1+1+1+1+2 
3) 1+1+1+2+2 
4) 1+1+1+4 
5) 1+2+2+2 
6) 1+2+4 

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000). 

Input

A single line with a single integer, N.

Output

The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).

Sample Input

7

Sample Output

6
初学动态规划,我用了一种非常愚蠢的解法耗内存又超时了...
AC代码:
#include<iostream>#include<algorithm>using namespace std;int dp[1000000+1];/*const int N_MAX = 1000000;int dp[21][N_MAX + 1];int main() {    int N;    while (cin >> N) {        int k = 0;      while ((1 << k) <= N) {//求使得2^k大于N的最小k        k++;     }      for (int i = 0;i < k;i++)           dp[i][0] = 0;      for (int i = 1;i <= N;i++)          dp[0][i] = 1;      for (int i = 1;i < k;i++) {          for (int j = 1;j <= N;j++) {              dp[i][j] = dp[i - 1][j];              for (int k1 = 1;(j - k1*(1 << i))>=0;k1++) {                  dp[i][j] += dp[i - 1][j - k1*(1 << i)];              }          }      }      cout << dp[k-1][N] << endl;    }    return 0;}*///若i为奇数,(i-1)为偶数,i的组合数就是(i-1)的组合数,因为(i-1)只能加1得到i。若i为偶数,(i-1)为奇数,则通过(i-1)+1的方式得到i的组合必定带有1,接下来考虑//全是偶数的组合数,考虑到全是偶数的组合数和(i/2)的组合数一样,因为只要(i/2)的组合数里每一个数*2就可以得到iint main() {    int N;    while (cin >> N) {        dp[1] = 1;        for (int i = 2;i <= N;i++) {            if ((i & 1)==0) {//若为偶数                dp[i] = dp[i / 2];            }            dp[i] += dp[i - 1];            dp[i] %= 1000000000;        }        cout << dp[N] << endl;    }    return 0;}

 




poj 2220 Sumsets