首页 > 代码库 > sklearn.metrics import precision_recall_fscore_support
sklearn.metrics import precision_recall_fscore_support
二分类/多分类/多标签
对于二分类来说,必须定义一些matrics(f1_score,roc_auc_score)。在这些case中,缺省只评估正例的label,缺省的正例label被标为1(可以通过配置pos_label参数来完成)
将一个二分类matrics拓展到多分类或多标签问题时,我们可以将数据看成多个二分类问题的集合,每个类都是一个二分类。接着,我们可以通过跨多个分类计算每个二分类metrics得分的均值,这在一些情况下很有用。你可以使用average参数来指定。
- macro:计算二分类metrics的均值,为每个类给出相同权重的分值。当小类很重要时会出问题,因为该macro-averging方法是对性能的平均。另一方面,该方法假设所有分类都是一样重要的,因此macro-averaging方法会对小类的性能影响很大。
- weighted: 对于不均衡数量的类来说,计算二分类metrics的平均,通过在每个类的score上进行加权实现。
- micro: 给出了每个样本类以及它对整个metrics的贡献的pair(sample-weight),而非对整个类的metrics求和,它会每个类的metrics上的权重及因子进行求和,来计算整个份额。Micro-averaging方法在多标签(multilabel)问题中设置,包含多分类,此时,大类将被忽略。
- samples:应用在 multilabel问题上。它不会计算每个类,相反,它会在评估数据中,通过计算真实类和预测类的差异的metrics,来求平均(sample_weight-weighted)
- average:average=None将返回一个数组,它包含了每个类的得分.
多分类(multiclass)数据提供了metric,和二分类类似,是一个label的数组,而多标签(multilabel)数据则返回一个索引矩阵,当样本i具有label j时,元素[i,j]的值为1,否则为0.
sklearn.metrics import precision_recall_fscore_support
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。