首页 > 代码库 > Ural Amount of Degrees(数位dp)

Ural Amount of Degrees(数位dp)

传送门

Amount of Degrees

Time limit: 1.0 second
Memory limit: 64 MB

Description

Create a code to determine the amount of integers, lying in the set [X;Y] and being a sum of exactly K different integer degrees of B.
Example. Let X=15, Y=20, K=2, B=2. By this example 3 numbers are the sum of exactly two integer degrees of number 2:
17 = 24+20,
18 = 24+21,
20 = 24+22.

Input

The first line of input contains integers X and Y, separated with a space (1 ≤ X ≤ Y ≤ 231−1). The next two lines contain integers K and B (1 ≤ K ≤ 20; 2 ≤ B ≤ 10).

Output

Output should contain a single integer — the amount of integers, lying between X and Y, being a sum of exactly K different integer degrees of B.

Sample

inputoutput
15 2022
3

 

解题思路

题意:

技术分享

 

思路:

技术分享

技术分享

技术分享

 

#include<iostream>#include<string>using namespace std;int f[32][32];int change(int x, int b){    string s;    do    {        s = char(‘0‘ + x % b) + s;        x /= b;    }    while (x > 0);    for (int i = 0; i < s.size(); ++i)        if (s[i] > ‘1‘)        {            for (int j = i; j < s.size(); ++j) s[j] = ‘1‘;            break;        }    x = 0;    for (int i = 0; i < s.size(); ++i)        x = x | ((s[s.size() - i - 1] - ‘0‘) << i);   //或运算,在此相当于加法    return x;}void init()//预处理f{    f[0][0] = 1;    for (int i = 1; i <= 31; ++i)    {        f[i][0] = f[i - 1][0];        for (int j = 1; j <= i; ++j) f[i][j] = f[i - 1][j] + f[i - 1][j - 1];    }}int calc(int x, int k) //统计[0..x]内二进制表示含k个1的数的个数{    int tot = 0, ans = 0; //tot记录当前路径上已有的1的数量,ans表示答案    for (int i = 31; i > 0; --i)    {        if (x & (1 << i))     //该位上是否为1        {            ++tot;            if (tot > k) break;            x = x ^ (1 << i);  //将这一位置0        }        if ((1 << (i - 1)) <= x)        {            ans += f[i - 1][k - tot];        }    }    if (tot + x == k) ++ans;    return ans;}int main(){    int x, y, k, b;    cin >> x >> y >> k >> b;    x = change(x, b);    y = change(y, b);    init();    cout << calc(y, k) - calc(x - 1, k) << endl;    return 0;}

  

Ural Amount of Degrees(数位dp)