首页 > 代码库 > poj3678Katu Puzzle
poj3678Katu Puzzle
#include<iostream> #include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<algorithm> using namespace std; const int MAXN = 1010; struct twosat { int n,c; vector<int> g[MAXN<<1]; bool mark[MAXN<<1]; int s[MAXN<<1]; bool dfs(int x) { int i; if (mark[x^1]) return 0; if (mark[x]) return 1; mark[x] = 1; s[c++] = x; for (i = 0; i < g[x].size(); i++) if (!dfs(g[x][i])) return 0; return 1; } void init(int n) { int i,t=n<<1; this->n = n; for (i = 0; i < t; i++) g[i].clear(); memset(mark, 0, sizeof(mark)); } void add_clause(int x,int xval,int y,int yval) { x=x*2+xval; y=y*2+yval; g[x].push_back(y^1); g[y].push_back(x^1); } bool solve() { int i,t=n<<1; for (i = 0; i < t; i += 2) if (!mark[i] && !mark[i + 1]) { c = 0; if (!dfs(i)) { while (c > 0) mark[s[--c]] =0; if (!dfs(i + 1)) return 0; } } return 1; } }ender; int work(int a,int b,int k) { return k==0?a&b:k==1?a|b:a^b; } int main() { char s[100]; int a,b,c,n,m,x,y,k; while(cin>>n>>m) { ender.init(n); while(m--) { scanf("%d%d%d%s",&a,&b,&c,s); k=strcmp(s,"AND")==0?0:strcmp(s,"OR")==0?1:2; for(x=0;x<2;x++) for(y=0;y<2;y++) if(work(x,y,k)!=c) ender.add_clause(a,x,b,y); } cout<<(ender.solve()?"YES":"NO")<<endl; } return 0; }
Katu Puzzle
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8007 | Accepted: 2943 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edgee(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integerc (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertexVi a value Xi (0 ≤ Xi ≤ 1) such that for each edgee(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a <N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4 0 1 1 AND 1 2 1 OR 3 2 0 AND 3 0 0 XOR
Sample Output
YES
Hint
Source
poj3678Katu Puzzle