首页 > 代码库 > POJ 1651 Multiplication Puzzle (区间DP)
POJ 1651 Multiplication Puzzle (区间DP)
Description
The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.
The goal is to take cards in such order as to minimize the total number of scored points.
For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000
If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.
The goal is to take cards in such order as to minimize the total number of scored points.
For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
Input
The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.
Output
Output must contain a single integer - the minimal score.
Sample Input
6 10 1 50 50 20 5
Sample Output
3650
题解: 设dp[i][[j] 为从i到j取完出了a[i]和a[j]这两个数的最小代价。最终所要求出的是dp[1][n]。
假设在i到j区间内最后一个取a[k],那么子问题便可以看得出来:求出dp[i][k]和dp[k][j]的最小代价,求出这两个子问题的代价再加上最后一个取出a[k]的代价,即为dp[i][j]的代价。
问题转化为求出子问题的代价,直到只剩下三个数为止,三个数只能取中间的数。
#include <stdio.h> #include <string.h> #include <algorithm> #include <math.h> #define lson o << 1, l, m #define rson o << 1|1, m+1, r using namespace std; typedef long long LL; const int MAX=0x3f3f3f3f; const int maxn = 100+10; int n, dp[maxn][maxn], a[maxn]; int main() { scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); for(int i = 2; i <= n-1; i++) dp[i-1][i+1] = a[i-1]*a[i]*a[i+1]; //边界,三个数只能取中间的数 for(int len = 4; len <= n; len ++) for(int i = 1; i <= n-len+1; i++) { int j = i+len-1; dp[i][j] = MAX; for(int k = i+1; k <= j-1; k++) dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + a[j]*a[k]*a[i]); } printf("%d\n", dp[1][n]); return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。