首页 > 代码库 > 数据结构之---C语言实现拓扑排序AOV图
数据结构之---C语言实现拓扑排序AOV图
//有向图的拓扑排序 //杨鑫 #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_NAME 3 #define MAX_VERTEX_NUM 20 typedef int InfoType; //存放网的权值 typedef char VertexType[MAX_NAME]; //字符串类型 typedef enum{DG, DN, AG, AN}GraphKind; //{有向图,有向网,无向图,无向网} //图的邻接表存储 typedef struct ArcNode { int adjvex; //该弧所指向的顶点的位置 struct ArcNode *nextarc; //指向吓一条的指针 InfoType *info; //网的权值指针 }ArcNode; typedef struct VNode { VertexType data; //顶点信息 ArcNode *firstarc; //第一个表结点的地址,指向第一条依附该顶点的弧的指针 }VNode, AdjList[MAX_VERTEX_NUM]; //头结点 typedef struct { AdjList vertices; int vexnum, arcnum; //图的当前顶点数和弧数 int kind; //图的种类标志 }ALGraph; //若G中存在顶点u,则返回该顶点在图中的位置。都则返回-1 int LocateVex(ALGraph G, VertexType u) { int i; for(i = 0; i < G.vexnum; ++i) { if(strcmp(u, G.vertices[i].data) == 0) return i; return -1; } } //採用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图) int CreateGraph(ALGraph *G) { int i, j, k; int w; //权值 VertexType va, vb; ArcNode *p; printf("请输入图的类型(有向图:0,有向网:1。无向图:2,无向网:3):"); scanf("%d", &(*G).kind); printf("请输入图的顶点数和边数:(以空格间隔): \n"); scanf("%d%d", &(*G).vexnum, &(*G).arcnum); printf("请输入%d个顶点的值(小于%d个字符):\n", (*G).vexnum, MAX_NAME); for(i = 0; i < (*G).vexnum; ++i) //构造顶点向量 { scanf("%s", (*G).vertices[i].data); (*G).vertices[i].firstarc = NULL; } if((*G).kind == 1 || (*G).kind == 3) //网 { printf("请顺序输入每条弧(边)的权值,弧尾和弧头(以空格作为间隔):\n"); } else //图 { printf("请顺序输入每条弧(边)的弧尾和弧头(以空格作为间隔):\n"); } for(k = 0; k < (*G).arcnum; ++k) { if((*G).kind == 1 || (*G).kind == 3) scanf("%d%s%s", &w, va, vb); else scanf("%s%s", va, vb); i = LocateVex(*G, va); //弧尾 j = LocateVex(*G, vb); //弧头 p = (ArcNode*)malloc(sizeof(ArcNode)); p->adjvex = j; if((*G).kind == 1 || (*G).kind == 3) { p->info = (int *)malloc(sizeof(int)); *(p->info) = w; } else { p->info = NULL; } p->nextarc = (*G).vertices[i].firstarc; //插在表头 (*G).vertices[i].firstarc = p; if((*G).kind >= 2) //无向图或网。产生第二个表结点 { p = (ArcNode*)malloc(sizeof(ArcNode)); p->adjvex = i; if((*G).kind == 3) { p->info = (int*)malloc(sizeof(int)); *(p->info) = w; } else { p->info = NULL; } p->nextarc = (*G).vertices[j].firstarc; //插在表头 (*G).vertices[j].firstarc = p; } } return 1; } //输出图的邻接表G void Display(ALGraph G) { int i; ArcNode *p; switch(G.kind) { case DG: printf("有向图\n"); break; case DN: printf("有向网\n"); break; case AG: printf("无向图\n"); break; case AN: printf("无向网\n"); } printf("%d 个顶点: \n", G.vexnum); for(i = 0; i < G.vexnum; ++i) { printf("%s ", G.vertices[i].data); } printf("\n%d条弧(边):\n", G.arcnum); for(i = 0; i < G.vexnum; i++) { p = G.vertices[i].firstarc; while(p) { if(G.kind <= 1) { printf("%s->%s", G.vertices[i].data, G.vertices[p->adjvex].data); if(G.kind == DN) printf(":%d ", *(p->info)); } else { if(i < p->adjvex) { printf("%s--%s", G.vertices[i].data, G.vertices[p->adjvex].data); if(G.kind == AN) printf(":%d ", *(p->info)); } } p = p->nextarc; } printf("\n"); } } //求顶点的入度 void FindInDegree(ALGraph G, int indegree[]) { int i; ArcNode *p; //赋初值 for(i = 0; i < G.vexnum; i++) { indegree[i] = 0; } for(i = 0; i < G.vexnum; i++) { p = G.vertices[i].firstarc; while(p) { indegree[p->adjvex]++; p = p->nextarc; } } } //栈类型 typedef int SElemType; #define STACK_INIT_SIZE 10 //存储空间初始分配量 #define STACKINCREMENT 2 //存储空间分配增量 //栈的顺序存储结构表示 typedef struct SqStack { SElemType *base; //基地址 SElemType *top; //栈顶指针 int stacksize; //当前已经分配的存储空间 }SqStack; //构造一个空栈 int InitStack(SqStack *S) { //为栈底分分配一个指定大小的存储空间 (*S).base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!(*S).base) exit(0); (*S).top = (*S).base; //栈底与栈顶指针同样 (*S).stacksize = STACK_INIT_SIZE; return 1; } //若栈S为空栈(栈底指针和栈顶指针同样), 则返回1。否则返回0 int StackEmpty(SqStack S) { if(S.top == S.base) return 1; else return 0; } //插入元素e为新的栈顶元素 int Push(SqStack *S, SElemType e) { if((*S).top - (*S).base >= (*S).stacksize) { (*S).base = (SElemType *)realloc((*S).base,((*S).stacksize + STACKINCREMENT)*sizeof(SElemType)); if(!(*S).base) exit(0); (*S).top = (*S).base + (*S).stacksize; (*S).stacksize += STACKINCREMENT; } *((*S).top)++= e; return 1; } //若栈不为空,则删除S栈顶元素用e返回其值。并返回1。否则返回0 int Pop(SqStack *S, SElemType *e) { if((*S).top == (*S).base) { return 0; } *e = *--(*S).top; return 1; } //有向图的G採用邻接表存储结构。若G无回路,则输出G的顶点的一个拓扑结构 int TopologicalSort(ALGraph G) { int i, k, count, indegree[MAX_VERTEX_NUM]; SqStack S; ArcNode *p; FindInDegree(G, indegree); InitStack(&S); for(i = 0; i < G.vexnum; ++i) { if(!indegree[i]) Push(&S, i); count = 0; //栈不空 while(!StackEmpty(S)) { Pop(&S, &i); printf("%s", G.vertices[i].data); //输出i号顶点并计数 ++count; //对i号顶点的每一个邻接点的入度减1 for(p == G.vertices[i].firstarc; p; p = p->nextarc) { k = p->adjvex; if(!(--indegree[k])) //若入度减为0,则入栈 Push(&S, k); } } if(count < G.vexnum) { printf("此有向图有回路\n"); return 0; } else { printf("为一个拓扑序列!!\n"); } } } int main() { ALGraph f; printf("请选择有向图\n"); CreateGraph(&f); Display(f); TopologicalSort(f); return 0; }
结果:
数据结构之---C语言实现拓扑排序AOV图
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。