首页 > 代码库 > zoj 2778 - Triangular N-Queens Problem

zoj 2778 - Triangular N-Queens Problem

题目:在三角形的棋盘上放n皇后问题。

分析:找规律题目。依照题目的输出,能够看出构造法则;

            先填奇数,后填偶数。以下我们仅仅要证明这样的构造的存在性就可以。

            解法:先给出集体构造方法,从(1。n-f(n)+1) 開始填充奇数点;

                      填充全部的(1+2k。n-f(n)+1+k){当中f(n)就是最大填充数。1+2k<=n-f(n)+1+k} 。

                      之后開始从(2。n-f(n)+1+k+1)開始填充偶数点,因为奇数点仅仅能攻击奇数点。

                      偶数点仅仅能攻击偶数点,所以仅仅要保证每行一个皇后就能够了。 

            证明:我们仅仅须要证明从第n-f(n)+1行開始。每行都能够放一个皇后就能够了; 

                      首先。依照上面的构造可知,如此构造。皇后是不能够互相攻击的。

                      然后,因为第i行有i个元素。所以有 1+2k<=n-f(n)+1+k。

                      解得。k <= n-f(n)>= f(n)/2,因此至少有一半是奇数点;

                      偶数点仅仅要插入到奇数点之间就能够构造了。构造成功。 

说明:(2011-09-19 01:28)。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
bool M[ 1001 ][ 1001 ];
int  F[ 1005 ];
int  A[ 668 ];
int  B[ 668 ];

int main()
{
    /* 递推公式 
    memset( F, 0, sizeof( F ) );
    F[ 0 ] = 0;F[ 1 ] = 1;F[ 2 ] = 1;
    for ( int i = 3 ; i <= 1000 ; ++ i )
        F[ i ] = F[ i-3 ] + 2;
    */
    for ( int i = 1 ; i <= 1000 ; ++ i )
        F[ i ] = (2*i+1)/3;
    int c,n;
    while ( scanf("%d",&c) != EOF ) 
    for ( int t = 1 ; t <= c ; ++ t ) {
        memset( M, 0, sizeof( M ) );
        
        scanf("%d",&n);
        printf("%d %d %d\n",t,n,F[ n ]);
            
        int y = n-F[ n ]+1;
        int x = 1;
        for ( int i = 0 ; i < F[ n ] ; ++ i ) {
            A[ i ] = y;B[ i ] = x;
            M[ y ][ x ] = 1;
            y += 1;x += 2;
            if ( x > y ) x = 2;
        }
        /* 画图部分 
        for ( int p = 1 ; p <= n ; ++ p ) {
            for ( int q = 0 ; q < n-p ; ++ q )
                printf(" ");
            for ( int q = 1 ; q <= p ; ++ q )
                if ( M[ p ][ q ] )
                printf("* ");
                else
                    printf("@ ");
            printf("\n");
        }
        */
        printf("[%d,%d]",A[ 0 ],B[ 0 ]);
        for ( int i = 1 ; i < F[ n ] ; ++ i ) {
            if ( i%8 == 0 ) printf("\n");
            else printf(" ");
            printf("[%d,%d]",A[ i ],B[ i ]);
        }
        printf("\n\n");
    }
    return 0; 
}

zoj 2778 - Triangular N-Queens Problem