首页 > 代码库 > [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)

[luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)

传送门

 

f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解

可以优化 k 其实等于 n - j + i

则 f[i][j] = max(f[i + 1][j] + a[i] * (n - j + i), f[i][j - 1] + a[j] * (n - j + i))

边界 f[i][i] = a[i] * n

递推顺序不好求,所以选择记忆化搜索。

 

——代码

技术分享
 1 #include <cstdio> 2 #include <iostream> 3  4 const int MAXN = 2001; 5 int n; 6 int a[MAXN], f[MAXN][MAXN]; 7  8 inline int read() 9 {10     int x = 0, f = 1;11     char ch = getchar();12     for(; !isdigit(ch); ch = getchar()) if(ch == -) f = -1;13     for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - 0;14     return x * f;15 }16 17 inline int max(int x, int y)18 {19     return x > y ? x : y;20 }21 22 inline int dp(int x, int y)23 {24     if(f[x][y]) return f[x][y];25     if(x == y) return f[x][y] = a[x] * n;26     else return f[x][y] = max(dp(x + 1, y) + a[x] * (n - y + x), dp(x, y - 1) + a[y] * (n - y + x));27 }28 29 int main()30 {31     int i;32     n = read();33     for(i = 1; i <= n; i++) a[i] = read();34     printf("%d\n", dp(1, n));35     return 0;                                                                                                                                                                                                                                                                                                                36 }
View Code

 

[luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)