首页 > 代码库 > POJ 1176 Party Lamps (DFS)

POJ 1176 Party Lamps (DFS)

对于一串彩灯,提供四种改变彩灯状态(ON<=>OFF)的操作:a.改变所有彩灯状态;b.改变奇数彩灯状态;c.改变偶数彩灯状态;d.改变3k+1号彩灯状态(1,4,7,10...)。

 给定彩灯数目,操作次数,和对于某几个彩灯必须为ON、某几个彩灯必须为OFF的要求,问经过给定次数的操作,最终能达到的满足要求的状态有多少种,输出所有满足要求的彩灯状态。

 原题中操作次数是1<=C<=10000的,如果以此为搜索深度,未免比较可怕。还好这里有点小玄机,可以将搜索次数大大限制。

考虑那四个操作,可以发现有这样的特点:

 1.操作序列中的各操作是可以交换的,即ab=ba;

2.每两次相同操作效果抵消,即aab=b。

 可以将将偶数个相同操作消除,奇数个相同操作剩余一个即可,得到一个小于等于4个操作的操作序列,其中每个操作不多于一次。

据此处理一个操作序列,首先将所有相同的操作归并到一起,得到aa...ab....bc....cd....d的序列;然后将偶数个相同操作消除,奇数个相同操作剩余一个即可,得到一个小于等于4个操作的操作序列,其中每个操作不多于一次。

所以可以将操作数限制在4以下,4^4=256,一共有256种最终状态,暴搜即可。以4层搜索为例,每层搜索中求解彩灯状态建立在上层搜索的结果状态上,用一个线性数组存储所有层次结果的话,需要建立起下层结果和上层结果在存储位置上的对应方式,由于每次搜索将结果数扩张四倍,所以得到对应关系为i = (j-1)/4。

#include<iostream>
#include<algorithm>
#include<string>
#include<stdlib.h>
using namespace std;
int N;
int C;
int a[101];
int _open[101];
int _close[101];
string ss[300];
void do1()
{
    for(int i=1;i<=100;++i)
        a[i]^=1;
}
void do2()
{
    for(int i=2;i<=N;i+=2)
        a[i]^=1;
}
void do3()
{
    for(int i=1;i<=N;i+=2)
        a[i]^=1;
}
void do4()
{
    for(int i=1;i<=N;i+=3)
        a[i]^=1;
}
int cnt=0;
int check()
{
    for(int i=1;i<=N;++i){
        if(_open[i]==1&&a[i]==0)return 1;
        if(_close[i]==1&&a[i]==1)return 1;
    }
    return 0;
}
void dfs(int c)
{
    if(c==C)
    {
        if(check()==0)
        {
            ss[cnt]="";
            for(int i=0; i<N; i++)
                ss[cnt]+=(a[i+1]+'0');
            cnt++;
        }
        return;
    }
    for(int i=1;i<=4;++i)
    {
        switch(i)
        {
        case 1:
            do1();//开关一次
            dfs(c+1);
            do1();//再开关一次还原回来
            break;
        case 2:
            do2();
            dfs(c+1);
            do2();
            break;
        case 3:
            do3();
            dfs(c+1);
            do3();
            break;
        case 4:
            do4();
            dfs(c+1);
            do4();
            break;
        }
    }
}
int main(int argc, char *argv[])
{
    //   freopen("1176.in","r",stdin);
    scanf("%d",&N);
    scanf("%d",&C);
    memset(_open,0,sizeof(_open));
    memset(_close,0,sizeof(_close));
    for(int i=1;i<=N;++i)
        a[i]=1;
    int tmp;
    while(scanf("%d",&tmp)==1&&tmp!=-1)
        _open[tmp]=1;
    while(scanf("%d",&tmp)==1&&tmp!=-1)
        _close[tmp]=1;
    if(C>4)
    {
        C%=2;
        if (C==1)
        {
            C=3;
        }
        else
        {
            C=4;
        }
    }
    dfs(0);
    sort(ss,ss+cnt);
    cout<<ss[0]<<endl;
    int i,j;
    for(i=0,j=1;j<cnt;j++)
        if(ss[i]!=ss[j])
        {
            i=j;
            cout<<ss[i]<<endl;
        }

    return 0;
}


POJ 1176 Party Lamps (DFS)