首页 > 代码库 > 最小生成树,最短路径算法
最小生成树,最短路径算法
经典的贪心策略 Prim算法,Kruskal算法求最小生成树,dijkstra求最短路径
最小生成树算法 用到的并查集 在之前博客写,图都是下面的,最小生成树无向就行了
/** * 文件名:GraphTest2.java * 时间:2max14年11月17日下午6:2max:1max * 作者:修维康 */ package chapter9; import java.util.Comparator; import java.util.PriorityQueue; import java.util.Scanner; import chapter8.DisjSets;//并查集 /** * 类名:Edeg 说明:边 */ class Edge { public int v1; public int v2; public int dist; public Edge(int v1, int v2, int dist) { this.v1 = v1; this.v2 = v2; this.dist = dist;// 权值 } } class DistComparator implements Comparator<Edge> { @Override public int compare(Edge o1, Edge o2) { // TODO Auto-generated method stub if (o1.dist > o2.dist) return 1; else if (o1.dist < o2.dist) return -1; return 0; } } public class GraphTest2 { public static final int max = Integer.MAX_VALUE; /** * 方法名:dijkstra 说明:迪杰斯克拉算法,V代表源 g存储图的信息,dist[i]代表到v到i的权,prev[i]代表 顶点i的前一个顶点 */ public static void Dijkstra(int v, int n, int[][] g, int[] dist, int[] prev) { boolean[] s = new boolean[n + 1]; for (int i = 1; i <= n; i++) { dist[i] = g[v][i]; s[i] = false; if (dist[i] == max) prev[i] = 0; else prev[i] = v; } s[v] = true; dist[v] = 0; // 从V-S中找到权值最小的边 for (int i = 1; i < n; i++) { int temp = max; int u = v; for (int j = 1; j <= n; j++) if (!s[j] && temp > dist[j]) { temp = dist[j]; u = j; } s[u] = true; // 更新 for (int j = 1; j <= n; j++) { if (!s[j] && g[u][j] < max) { int newDist = dist[u] + g[u][j]; if (newDist < dist[j]) { dist[j] = newDist; prev[j] = u; } } } } } /** * 方法名:printPath 说明:打印最短路径 */ public static void printPath(int[] prev, int v) { System.out.print(v + " "); while (prev[v] != 0) { System.out.print(prev[v] + " "); v = prev[v]; } } /** * 方法名:Prim 说明:最小生成树 Prim算法 lowcost[i]为顶点i到S集合中任意一点 最小的权值 closest[i]为 * S中与i顶点相连权值最小的顶点 */ public static void Prim(int[][] g, int n) { boolean[] s = new boolean[n + 1]; int[] lowcost = new int[n + 1]; int[] closest = new int[n + 1]; s[1] = true; lowcost[1] = 0; for (int i = 2; i <= n; i++) { lowcost[i] = g[1][i]; closest[i] = 1; s[i] = false; } // 从V-S中找到与S中的顶点相连 且权值最小的点 for (int i = 1; i < n; i++) { int min = max; int j = 1; for (int k = 2; k <= n; k++) { if (!s[k] && lowcost[k] < min) { min = lowcost[k]; j = k; } } s[j] = true; System.out.println(j + " " + closest[j]); // 重新更新 lowcost lowcost[i]为顶点i到S集合中任意一点 最小的权值 for (int k = 2; k <= n; k++) { if (!s[k] && g[j][k] < lowcost[k]) { lowcost[k] = g[j][k]; closest[k] = j; } } } } /** * 方法名:Kruskal 说明:最小生成树 Kruskal算法 */ public static void Kruskal(PriorityQueue<Edge> p, int n) { DisjSets ds = new DisjSets(n + 1);// 并查集 Edge e; int edgesAccepted = 0; while (edgesAccepted < n - 1) { e = p.poll(); int uset = ds.find(e.v1); int vset = ds.find(e.v2); if (uset != vset) { edgesAccepted++; System.out.println(e.v1 + " " + e.v2); ds.union1(uset, vset); } } } /** * 方法名:main 说明:测试 */ public static void main(String[] args) { // TODO Auto-generated method stub int[][] g = new int[][] { { max, max, max, max, max, max, max, max }, { max, max, 2, max, 1, max, max, max }, { max, max, max, max, 3, 10, max, max }, { max, 4, max, max, max, max, 5, max }, { max, max, max, 2, max, 2, 18, 4 }, { max, max, max, max, max, max, max, 6 }, { max, max, max, max, max, max, max, max }, { max, max, max, max, max, max, 1, max } }; // Graph graph = new Graph(g); int[] dist = new int[8]; int[] prev = new int[8]; Scanner in = new Scanner(System.in); System.out.println("请输入顶点号:"); int v = in.nextInt(); Dijkstra(v, 7, g, dist, prev); System.out.println("请输入目的顶点:"); int n = in.nextInt(); System.out.println("顶点" + v + "到顶点" + n + "的权值为" + dist[n]); printPath(prev, n); int[][] g2 = new int[][] { { max, max, max, max, max, max, max, max }, { max, max, 2, 4, 1, max, max, max }, { max, 2, max, max, 3, 10, max, max }, { max, 4, max, max, 2, max, 5, max }, { max, 1, 3, 2, max, 7, 8, 4 }, { max, max, 10, max, 7, max, max, 6 }, { max, max, max, 5, 8, max, max, 1 }, { max, max, max, max, 4, 6, 1, max } }; Prim(g2, 7); PriorityQueue<Edge> p = new PriorityQueue<Edge>(12, new DistComparator()); p.add(new Edge(1, 2, 2)); p.add(new Edge(1, 4, 1)); p.add(new Edge(2, 4, 3)); p.add(new Edge(1, 3, 4)); p.add(new Edge(3, 4, 2)); p.add(new Edge(4, 5, 7)); p.add(new Edge(2, 5, 10)); p.add(new Edge(3, 6, 5)); p.add(new Edge(4, 6, 8)); p.add(new Edge(6, 7, 1)); p.add(new Edge(4, 7, 4)); p.add(new Edge(5, 7, 6)); System.out.println("Kruskal算法:"); Kruskal(p, 7); } }
最小生成树,最短路径算法
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。