首页 > 代码库 > 关于sqrt函数的算法
关于sqrt函数的算法
我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢?
虽然有可能你平时没有想过这个问题,不过正所谓是“临阵磨枪,不快也光”,你“眉头一皱,计上心来”,这个不是太简单了嘛,用二分的方法,在一个区间中,每次拿中间数的平方来试验,如果大了,就再试左区间的中间数;如果小了,就再拿右区间的中间数来试。比如求sqrt(16)的结果,你先试(0+16)/2=8,8*8=64,64比16大,然后就向左移,试(0+8)/2=4,4*4=16刚好,你得到了正确的结果sqrt(16)=4。然后你三下五除二就把程序写出来了:
float SqrtByBisection(float n) //用二分法 { if(n<0) //小于0的按照你需要的处理 return n; float mid,last; float low,up; low=0,up=n; mid=(low+up)/2; do { if(mid*mid>n) up=mid; else low=mid; last=mid; mid=(up+low)/2; }while(abs(mid-last) > eps);//精度控制 return mid; }
然后看看和系统函数性能和精度的差别(其中时间单位不是秒也不是毫秒,而是CPU Tick,不管单位是什么,统一了就有可比性)
从图中可以看出,二分法和系统的方法结果上完全相同,但是性能上整整差了几百倍。为什么会有这么大的区别呢?难道系统有什么更好的办法?难道。。。。哦,对了,回忆下我们曾经的高数课,曾经老师教过我们“牛顿迭代法快速寻找平方根”,或者这种方法可以帮助我们,具体步骤如下:
求出根号a的近似值:首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代个六七次后x的值就已经相当精确了。 例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了: ( 4 + 2/4 ) / 2 = 2.25 ( 2.25 + 2/2.25 ) / 2 = 1.56944.. ( 1.56944..+ 2/1.56944..) / 2 = 1.42189.. ( 1.42189..+ 2/1.42189..) / 2 = 1.41423.. .... 这种算法的原理很简单,我们仅仅是不断用(x,f(x))的切线来逼近方程x^2-a=0的根。根号a实际上就是x^2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,x-f(x)/(2x)就是一个比x更接近的近似值。代入 f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x+a/x)/2。
相关的代码如下:
float SqrtByNewton(float x){ float val = x;//最终 float last;//保存上一个计算的值 do { last = val; val =(val + x/val) / 2; }while(abs(val-last) > eps); return val;}
然后我们再来看下性能测试:
哇塞,性能提高了很多,可是和系统函数相比,还是有这么大差距,这是为什么呀?想啊想啊,想了很久仍然百思不得其解。突然有一天,我在网上看到一个神奇的方法,于是就有了今天的这篇文章,废话不多说,看代码先:
float InvSqrt(float x){ float xhalf = 0.5f*x; int i = *(int*)&x; // get bits for floating VALUE i = 0x5f375a86- (i>>1); // gives initial guess y0 x = *(float*)&i; // convert bits BACK to float x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy return 1/x;}
然后我们最后一次来看下性能测试:
这次真的是质变了,结果竟然比系统的还要好。。。
关于sqrt函数的算法